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1 Introduction

This final report presents the results of an almost four year effort on finite element modeling

of the static and dynamic behavior of anisotropic materials with particular emphasis on

single crystal alloys used in the manufacturing of high-performance turbine blades. This

effort was motivated by a lack of finite element software capable of representing stress and

strain as second order tensors.

During the course of the project, various formulations for two- and three-dimensional

hybrid finite elements were developed and implemented into the SPAR finite element code.

These formulations were tested and compared with displacement-based approaches for both

static and dynamic problems.

In an extension of the original statement of work, a sensitivity analysis of experimental

results for anisotropic materials subject to misalignments and other errors was conducted.

As a results of this study, a formulation, numerical procedure, and computer software were

developed for the calculation of material constants for anisotropic materials and, moreover,

for the optimization of strain gauge and material axis orientations of tensile test specimens

for highly anisotropic materials. Moreover, as an additional task, a similar procedure and

software were developed for the evaluation of stresses by means of strain measurements and

for the optimization of the orientation of strain gauges in this case.

This report presents a summary of the technical effort over the course of this project.

The report is divided into several sections: In Section 2, general hybrid finite element for-

mulations are studied. Then, in Section 3, two-dimensional finite elements based on hybrid

formulations are developed and tested numerically. In the next section, a dynamic analysis,

using hybrid finite elements is discussed. This analysis is followed by the formulation of

three-dimensional hybrid finite elements (Section 5). In Section 6, alternate hybrid stress el-

ements are studied and verified numerically. As a conclusion of the theoretical developments

presented, several numerical examples cases for the SSME turbine blades are presented in

Section 7. This section is followed by the formulation of numerical procedures for the op-

timization of the orientation of material axes and strain gauges in experimental tests for

anisotropic materials (Section 8). Several numerical examples are presented to illustrate the

performance of the procedure.

In the appendices, updates to the SPAR code manual are presented. In four separate

volumes, theory and user's manuals for the two experiment optimization codes--OPTAM-C

and OPTAM-S--are included.



2 General Hybrid Element Formulation

2.1 Introduction

This project began with the study of a variety of methods for modeling vibrations of

anisotropic elastic blades with particular emphasis given to hybrid finite element formulations

and the feasibility of using helical shell elements. Apparently, some authors have attempted

to model isotropic curvilinear turbine blades using shell elements of variable thickness based

on a shell theory for surfaces generated along a helix. One advantage in this approach is

that models with relatively few degrees of freedom can yield quite acceptable results. A

disadvantage, of course, is the limited flexibility inherent in shell models for capturing the
effects of boundary conditions, three-dimensional stress states, etc.

Several alternative hybrid element formulations were investigated. Purely qualitative

studies were made, the objective being to assess a priori properties of various elements with

regard to

1. accuracy in computing stresses

2. ease in handling anisotropic properties

3. numerical stability in the presence of strong anisotropy

4. compatibility with the SPAR code structure

The basic formulation which generated interest is that which yields a hybrid element

from assumed displacement fields. Starting with the principle of minimum potential energy

with displacement continuity conditions as constraints, the boundary tractions then appear

as Lagrange multipliers. The resulting functional is of the form

(2.1)

Here standard notation is used: V_ is a typical element, Cijk_ are the elastic constants,

eij the strains, Fi the body forces, Ti the prescribed tractions on _?VI_ and ui the prescribed

displacements on d)V2_, where the T_ in this integral are the Lagrange multipliers.

Approximations take the form

= AZ, T = Cq (2.2)

where '3 and q are vectors of undetermined parameters. The strains are then

c = B2 (2.3)
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Denoting

HI = /v BTCBdV H2 = /v ATFdV

H3 = fav_ AT ¢ dV H4 ----/ov2 uT ¢ dV

(2.4)

a minimization of rc yields

Hence,

where

,_ = H('I(H3q + H2) (2,5)

1

rr = _ }-_(qr F_q -- 2Ur q) (2.6)

(2.7)

Equilibrium and continuity of interelement displacements is achieved in the discrete model
whenever

F_q = U_ (2.S)

The hybrid element stiffness matrix is then

I( : .Fe -1 (_,.9)

Hybrid element formulation

Six stress and displacement type elements were chosen for studies of stress accuracy, and

utility in vibrational analysis. Two separate finite element formulations were chosen.

1. Ifellinger-Reissner Formulation

The functional which assumes a stationary value is given by':

_ =Iv [-_oT So + oT(Du)] dV - j[avTT(u - u)ds (2.10)

Here cr is the vector of stress components, D is the differential operator defining the strain-

displacement relations (o = Du), with u the displacement vector, and T the boundary
traction.

The.displacements u are not assumed to be compatible and the equilibrium equations

are not satisfied identically but are brought in as constraints, so that the elements are more

"flexible" and the number of stress terms required to suppress zero-energy modes is reduced.

The elements also becomes less sensitive to changes in the reference coordinates [12].



The strain-displacement relation is given by

e=Du (2.11)

where the displacement u consists of a compatible part uc and an incompatible part u_,

which could be a bubble function vanishing on the boundary.

Now_

where Nor is the trace of c_ on the boundary, N being a matrix of direction cosines of the

unit exterior normal to 0V. Thus, if we set u_ = u -u and No, = T, we have,

rot = /V [--I_rT So" + crT(Duc) -- (DT _)T ua] dV

We see that the equilibrium equations

(_.13)

DTo " = 0 (i2.14 )

appear as a constraint with the u_ being the Lagrange multiplier.

In the finite element implementation, we assume

where

cr = P,3 (2.15)

61

p= C2 (2.1G)

and Ci's are row vectors.

Also, let

and

from which

and

so that

._ = xq (2.1;)

u_ = DA (2.1s)

Duo = Bq (B = DN) (2.19)

(E = DrP) (2.20)

_r_ = --2_T H_ +/3TGq -- fgZRl,k
(2.21)

4



where

H = iv PTSPdV

G = fv pTBdV

(2.2_.)

and

R1 = Iv ET LdV

Finding the first variation of z_ with respect to ,3 and ,\,

fl = H-I(Gq - R1A)

we get

(_.23)

(2.24)

and
RT2 = 0 (2.25)

1,

Now, the strain energy as expressed in terms of a stiffness matrix K and the generalized

coordinates q is given by

U= _qTKq
2

1
o-T So-d_/"

2.%)

in
Eliminating ,\ from equations (2.24) and (2.25), substituting d into the expression

equation (2.26) which becomes

U = _,3TH3. (2.27)

gives
(2.2s)

where
M = H -r (e.29)

The reversion of H becomes easier if the same C_'s are used for all of the normal stress

components. For example, in the case of a three-dimensional isotropic solid, when the stress

5



terms are not coupled,

¢1 -v¢1 -v¢1

H = 1/E

-- V¢1 ¢1 --1/¢1 0

-- V¢1 --U¢I ¢1

0 2(1 + _)¢s

(2.30)

2(i+ .)¢6

where

H can be easily inverted.

"2. Hu- Washizu Formulation

&i = L pT pidV (2.31)

Another approach to the development of mixed elements is to use the extended variational

principle of Hu and Washizu. The Hu-Washizu variational functional is given by:

where

7HW_ /V [_ gTCc-crT£ @ o'T(DlZ)] d_"-.£v TT(tL -- _l)d,5 '
2.:3.2)

where

The strain energy is then

and

_=P_ 2.35)

U= £ _J_dV= _gra_ (2.36)

A

B1

B_
2.37)

C = S -_ _.33)

and the independent variables are the stresses or, the strains e, element displacements u, and

boundary displacements u.

In the finite dement formulation, both cr and c are approximated by the same shape

function:

_r = P3 2.34)



and

B, = £ P,dV (2.3s)

The best choice for the reference coordinates should be such that the Bi's are diagonal

matrices and the inversion of H becomes easy.

Using the same approximation for u as in equations (2.17) and (2.18) and following a

similar line of logic results in the following:

_HW : laT doe --/3rAa q- flTGq --,dTRI,\ (2.39)

where

d = Iv PTCPdV ('_).40)

Setting the first variation of ,vHW with respect to fl and a to zero gives

Aa = Gq - RI,\ (2.41)

and

da = flT A (2.42)

Substituting the expression for c_ from equation (2.41) and (9.42) into the strain energy

solution (2.36),
T ,

K = GrMG - G T :_'[R_ (R__IIR,) - _R_ 310 (2.43)

where

M = A-1JA -_ (2.44)

Although the finite element formulation using the Hu-Washizu functional exists, all ap-

plications are derived with regards to shell/plate theory rather than analysis of continua.

Pian [15] has worked out solutions for three-dimensional brick elements using the mod-

ified Reissner principle. He has analyzed the 8 node hexahedral solid and the 20 node
hexahedral solid.

Hybrid Element Shortcomings

Stress-hybrid elements possess some shortcomings which must be overcome in order for them

to be useful The first major shortcoming of hybrid stress elements is that they can possess

zero energy modes which can have debilitating effects on eigenvalue problems. Babfiska,

Oden, and Lee (CMAME, 1978) have shown that such methods are stable and convergent

only if a global LBB-condition is statisfied, i.e., conditions of the type

I , udsl
 lllaltl <__sup v (2.45)

Ibtll

7



where ,_ is a multiplier on the constraint of continuity of displacements u across (interelement)

boundaries and IJl" Jt[, IJ" Ill are appropriate norms (for details, see [121). If the constant a

is equal to zero, the method is rank deficient and spurious modes exist. If a is a function of
mesh size h, the solution may be numerically unstable and its quality may deteriorate with

mesh refinement.

To overcome this problem, the method must possess an LBB-parameter

0 < o_ = constant independent of h (2.46)

A quick check for a necessary condition for stability is to calculate the rank of the matrix
associated with the constraint term (e.g., _,_uds). For the Hellinger-Reissner formulation

zero energy modes may normally be suppressed when the number of stress terms is equal

to or larger than the total degrees of freedom minus the number of rigid body degrees of

freedom. However, these stress terms must be chosen carefully because they do not all

contribute to the suppression of zero energy modes.

For the Hu-Washizu formulation, in the eight node solid, the minimum number of stress

terms required to eliminate zero-energy modes is ($ x 3 - 6 = IS). Using these terms, i.e.,

_r_ = ,31+,32g + _33z + 84Yz

O'y _ • • •

t_ z _ . . .

i%y = 91s+,J14z

(2.47)

T_ + _Jls+,316z

Txz = /317 -'_ _18Y

the bending of a beam was analyzed, and the resultswere not good.

If,however, the stresseswere to be decoupled as suggested, additional terms would be

required to eliminate the zero-energy modes, in fact,21 /3'swould be necessary.

By using three internaldisplacement parameters (A's),the number of _'s may be reduced

to 18. Results obtained with this formulation were quite good.

For two-dimensional problems, especially plane stress, Spilker [24] has shown the merits

of an eight noded quadrilateral with complete stress terms. His paper also considers 4-noded

quadrilaterals, using 5 _'s for the stress terms and a bilinear displacement approximation.

Although the results were good," the element was sensitive to changes in the reference coor-

dinates]

The second major shortcoming for hybrid stress elements is that these elements may yield

stiffness matrices that are not invariant under a change in local coordinate systems. Indeed,



the original Pian-hybrid-stresselement(now in SPAR) can yield severelydifferent stresses
when simple changes in the local coordinate system occur.

Invariance of the stiffness matrices may be guaranteed by introducing appropriate "bubble

functions" which serve as multipliers on the equilibrium constraint,

DTo " = 0 (2.48)

Completeness in all modes of the polynomial expansion is also important, to ensure

invariance with respect to the chosen reference coordinates. Another method of achieving

invariance is to use local coordinates.

In the modified Hellinger-Reissner formulation, the equilibrium equations are introduced

as a constraint and do not have to be satisfied pointwise. The degree of satisfaction depends

on the number of internal displacement parameters _ that are used.

The third and one of the most serious shortcomings of stress-hybrid elements is that, in

their present form, they are incapable of yielding a consistent approximation of the kinetic

energy in an element. This is a deficiency often "swept under the rug" in discussions of

applications of hybrid elements to problems of structural vibrations. Traditionally, mass
matrices are calculated using displacement or velocity approximations which are completely

independent of those used for (or resulting from) calculations of the element stiffness matri-
ces. To overcome this deficiency, it has been observed that the kinetic energy in a body .Q

can be written

L) = /ff _p,v2dV = fy 1)_pp2dV (2.49)

where p is the mass density and p is the momentum. The momentum is related to the stress

by
p = DT_ (2.50)

Hence, it may be possible to define a "consistent approximation" of the kinetic energy which

should produce more accurate approximations of mode shapes and frequencies.

9





3 Two-Dimensional Element Definition

3.1 Definition of Element Matrices

Using the Hellinger Reissner formulation and introducing the equilibrium conditions as a

constraint into the complementary energy functional and modifying produces the following

functionah
1

where cr, u are the stress and displacement vectors, S is the compliance matrix, D is the

differential operator, t'_ is the volume of the nth element, and T is the prescribed stress on

the boundary So,.

The stresses are interpolated in terms of the stress parameters 3 and the polynomial

shape functions P, i.e.,

= P/3 (3.2)

so that equilibrium is satisfied, i.e.,
DTcr = 0 (3.3)

For isoparametric elements,

= ¥ _)x_x X: _ _(_,_,
i

i

i

where (_, r/, ¢) form the parent plane and Ni(_, 7, _:) are the appropriate shape functions.

The displacements are interpolated in terms of the shape functions as

u = N({, 77,_)q

where q are the element nodal displacements.

Then the strain is given by

1

= Du = B(_,,7,_)q= -_lB'(_,_,_)q

where B = DN(x, y, z) and IJI is the Jacobian of the transformation.

(3.5)

3.6)

10



Substituting equations (3.2), (3.5), and (3.6) into (3.1) and defining

(3.7)

and noting that

gives

_mc _ n_

Equating the first variation of 7rmc to

dV = [Yld_dqd¢

{1jTH/3_ 3rGq + QqT}

zero in each element results in

(3.s)

(:3.9)

9 = H-1GLq _ = H-1Gq (3.10)

where q. are the global displacements which are related to the element displacements by the
Boolean matrix L_.

By substituting (3.10) into the expression for 5_mc, a new expression for tiv,_ c may be
written as

where Q is the element load vector and K is the element stiffness matrix

K = GTH-1G (3.12)

The equation (3.7) can be numerically integrated, but care should be taken to ensure

that the proper order of integration is used.

It has been proved in the paper by Spilker that if:the assumed stresses are complete

polynomials, the element stiffness will be invariant to general rotation and translation. To

reduce the numbers of _'s, the equations of equilibrium are applied to the assumed stress

terms. However, lack of invariance does not imply poor element performance. In isopara-

metric elements, however, as the choice of the local orthogonal system is not unique, the
element must be inherently invariant for good results.

As expected in plane elements, the optimal sampling points are the Gaussian points of
integration for the stresses. However, the results are still better than those in the assumed

displacement method, as the stresses in the hybrid method satisfy equilibrium conditions
which relate the stress gradients.

11



3.2 Examination of Different Element Models

The four-node linear displacement model (see Fig. 3.1).

The shape functions Ni(_, r/) for the intra-element displacement field correspond to those

for four-node biiinear functions.

Using complete polynomials for the stress approximation we have for a linear field

_y = /93 +/34x + _TY (3.13)

a_ = &-;_Tz-Z_y

which is variant.

The minimum number of ,3's required, rio, as a necessary condition for correct stiffness

rank is
r]_ >_ r]d.o.f -- //r.d.o.f (3.14)

where

7/d,o.f = number of element d.o.f.

7]r.d.o.f = number of rigid body d.o.f.

(3.15)

Spilker, et al. compares the performance of two dements, one with 7_'s (PH7L) and one

with five _'s (the minimum required by equation (3.14) - PH5L).

The optimal sampling point for both these elements is the centroid of the element. The
dimensions of the element are a and b. The stiffness matrix for the element PHTL corre-

sponding to a set of generalized displacement parameters o_, (for plane stress) is

K_=4Eab

0 0 0
(1-u 2) (1-u 2) "

_b2(1 ÷ f_) 0 0 00

v I
0 0 0

(i- ._) (I- _)

0 0 0 _a2(l+f2)

00 0 0

0

1 1

(i + u)

(3.16)

12



1

_p

Figure 3.1: The four node linear displacement model.
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i.e., the displacementsare interpolated assimple bilinear polynomialsof z, y in terms of the

eight displacement parameters. When the strain displacement relations (3.6) are used, to

relate e to a, only five a's remain as the constant terms fall out. These five a's correspond

to stretching and bending along the two axes and pure shear:

CZl = la(--_'1 -4- _'2 -[- _'3 -- _'4)

Ct2 = ¼ab(K1 --K2q-K3--_4)

= ¼b(-71 - 52 + v3 + v4) :3.17)

a4 = lab(-51 - t_2 -_-'Sa - _-4)

(25 -_" lab [b(--_l - _2 -_- _3 -4- -_4) -_- a(-Vl _- _2 -_ V3 -- V4)]

where all of the displacements correspond to the local coordinate system used.

]]

The terms fl and f2 are

/'2

[1 - v2 + (a/b)22(1 + i/)]

-
3. s)

[I - _2 + (b/a)2,2(1 q- z/)]

I( _ is definite and hence, PHTL has no spurious zero energy modes.

In PH5L, fl and f2 are different and, therefore, cause a difference in the analysis of the

bending problem. Element PHgL shows no spurious zero energy modes at 0 = 0. But since

I( depends on 0 the stiffness rank should be explored.

Computing the G matrix at an arbitrary angle 0, in terms of the general displacement

parameters

where

4ab 0 0 0 0

0 q 3 -4ab3Cl 0g(ab - aabc2) 0

0 0 4ab 0 0

0 4a3bq 0 3(aab-abac2) 0

0 0 0 0 4ab

(3.19)

C1 = 8 6 Jl- C 6 ; C2 -- C 6 -_- 8 6

C_

14



with s = sin0 and c = cos0.

It is found that the matrix G becomes singular for 0 = 45 ° leading to two zero-energy

modes, so that PH5L is not completely invariant. Thus, this element should be used with

great care.

A pure bending problem was solved using each of these two elements; the results are
summarized in Fig. 3.2. PHTL leads to a "stiff" solution that converges only when more

than ten elements are used. However, it is invariant, unlike PH5L, and gives good results at

all 0's.

The eight node quadratic displacement model (see Fig. 3.3) .

The shape functions here correspond to those for eight node isoparametric serendipity ele-

ments (for the displacement approximation).

For this 16 degree of freedom element, a minimum of 13 3's is required. The smallest

stress field that satisfies this requirement in equilibrium and invariance, is a cubic.

After ectuilibrium conditions are satisfied, an 1S d field is derived

d" 2 .310d?2 -q-i313 z3_;L" = ,;_1 -_- Id6 Z + ,d2Y "q'-' 8,_/ -3L21d92;Y -.t-

9 , 31793q- 3,_14a:-9 + 3315a;y 2 q-

Cry = ,d3 + 34Z -}- flV9 -4- 23uz9 + 312 x2 + ,!31o_2 nt- 3,313¢Y2
(3.21)

q- ,314g 3 q- 3_16X29 q-,dlS x3

O'z! _ = ,d5 -- flvX --_Lq6y --rill x2 --, 3992 -- 231oxy - 3i_13x2_1

-- 3_14zy 2 -- flls!j 3 -- fl16z 3

which is invariant and has no spurious zero-energy modes.

To reduce the number of fl's, the Beltrami-Mitchell compatibility conditions (for plane

strain) are employed, where V2(_, + _) = 0 (3.22)

15
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Then, after re-numbering,

o_ = /31 +/36x + 32y + 38y 2 + 2/39xy +/3;ox 2 + 3;2x 3

+ _la(3x_y - 2y3) + 3&4xy 2 - 315113

O'y _ ,,_3
+ /34X "J- /_TY + 2/_ll-_V -- /38 x2 -JV 310(l/2 -- 222 )

+ 312(3xy2 2x 3) + _ 3- 3;3y + 3315x2y -'314x 3

(3.23)

°'zv = 35 -- 37x --,36y --31;x 2 --/3992 -- 23;oxy -- 33;2x2y

--3313xY 2 --,3;4y 3 -- 315x 3

This element (PH15Q) is still a complete cubic with only 15 3's and is invariant and has

no spurious energy modes. The optimal sampling points for both tile PH15Q and PH1SQ
elements are the 2 x '2 Gaussian points.

Another reportedly good element is the 14 3 element developed and tested by Hershetl.
However, it is not invariant.

Some example problems were solved and the results, as well as the conclusions, are
summarized in Fig. 3.4.

The previous graph gives the results for a plane stress problem. The performance of the

PH14Q element is excellent., even when the order of integration is reduced to 3 x 3. However,

the PH18Q element stiffness becomes singular when the integration order is reduced.

3.3 Numerical Experiments

Some numerical experiments were conducted to compare hybrid stress elements with tra-

ditional displacement method elements. Results show remarkable deficiencies in traditional

displacement methods for anisotropic materials. The analysis of a cantilever beam under

the effect on an end shear load was selected as _:he test problem, as shown in Fig. 3.5. The
data for the problem include the following:
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E1

E2

/]2

= Young's modulus in direction 1

= Young's modulus in direction 2

= Poisson's ratio

G12 = Shear modulus (independent)

0 = angle between material and global axes

For the isotropic case, classical beam theory gives the following expression for the tip

deflection: _Vl3 (3.24)
Utip- 3 E I "

We shall use 1

l.I/ = 150lb., 1 = 10", E = 3.1071b/in 2, I = h3/12 = (:3.25)

Then

/'/tip = .02"

The assumption of plane stress was made.

(a) Isotropic case

1. Linear quadrilateral elements (4 nodes, 73, meshes shown in Fig. :3.6)

(a.26)

No. of nodes

(elements)

(mesh)

22 (10) (A)
33 (20)(B)
44 (ao)(c)
63 (40)(D)

grip (hybrid)/u_n_a.

0.8815

0.8297

0.8128

0.9690

l/ti p (disp.)/u_L (o'5)m,_:,:(hybrid)

0.6789

0.7110

1.1578

0.8950

(O'x)ma x ( aIlaJ. )

0.7837

0.7442

0.7418

0.9064

(c%)max (di sp-)

(_:)m.x (anal.)

0.7036

0.7152

1.2239

0.9176

2. Quadratic quadrilateral elements (8 nodes, 15/3)

No. of nodes

(elements)

'//'tip (hybrid)/u_l.

28 (5) 1.oo7o

Utip (disp.)/U_al.

0.9885

(_z)max (hybrid)

(Gx)max (an_.)

0.9841
] (_)max(disp.)

(ffz)max (anM.)

0.9693
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C

I

Figure 3.6: Finite element meshes used for testing the two-dimensional

A. 10 elements B. 20 elements

C. 30 elements D. 40 elements

hybrid stress models.
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(b) Anistropic case

l(a) Linear quadrilateral elements

E1 = 3 x 10rpsi, E2 = 3 x 505psi, v12 = 0.3

G12 = 1.1538 x 107psi, 0 = 30 °

No. of nodes

(elements)

63 (4o)

Utip (hybrid)

0.1136"

Utip (displ.)

0.6271"

(a,)m (hybrid)

6994.3 psi

(a_)m (displ.)

2353.4 psi

1 (b) Quadratic quadrilateral elements

No. of nodes =28,0=30 ° , E,/E2 = 100

'l/ti p (hybrid) utip (displ.) (cr_.),= (hybrid) I (a=) m (displ.) I0.1411" 0.8799 6827.0 psi t 6452.8 psi

'%9 (hybrid) ,%v (displ.)

697.8 psi I 419.2 psi

Similarly, for the same values of Et, E2, 6:12, v12, but for 0 = 45 ° and 0 = 0 °, _l_e above
cases were run. 'The results obtained were:

2(a) Linear quadrilateral elements 0 = 45 °

Utip (hybrid) Utip (displ.) (crz) m (hybrid)] (az) m (displ.) r_v (hybrid)! _y (displ.)

0.4049" 0.4131" 6867.2 psi I 10174 psi 1362.8 psi ] 733.3 psi

2(b)Quadratic quadrilateral elements 0 = 45 °

_ttip (hybrid) / 'tttip (displ.)

0.4964" ] 0.8831"

(_::)m (hybrid) (a_)m (displ.) r_y (.hybrid)

6682.0 psi 7844.6 psi 876.3 psi

r_y (displ.)

953.2 psi
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3(a)Linear elements0 = 0 °

Utip (hybrid) Utip (displ.) (0.z)m (hybrid)

0.02009" .018359" 6859.3.0 psi (erz) m (displ.) ra:_ (hybrid) ra:y (displ.)6314.5 psi 214.6 psi 1019.4 psi

3(b) Quadratic elements 0 = 0°

;grip (hybrid)

0.02022"

Utip (displ.) (c%)m (hybrid) (_r_)m (displ.) r-_y (hybrid)

0.02007" ] 6804.1 psi 6687 psi 215.2 psi

r_ (displ.)

248.2 psi

The analytic solution for the case with 0 = 0 ° is

o= = 6971.4 psi

r_y = 225 psi

So, the errors in the hybrid element model are:

or2::2.4% ; r2:y:4.4%

and in the displacement model, the errors are

o'x:4.2%(at best) ; r_:11.1% (at best) .

Next, the case of a tapered cantilever beam was considered (see Fig. 3.7). Only the

elements that gave reasonably accurate results were used (the quadratic quadrilateral hybrid

stress elements), which were compared with the regular displacement type elements. The

tip displacement, as determined by elementary beam theory for a uniform load W/length is
WL_

u = 4.08 x 10 .3 inches. Beam theory gives for the bending stress at any point is or2:= /
at that section, and is maximum at the supported end.

(a) Isotropic case - using quadratic quadrilateral elements (S nodes, 1,5 '3),

No. of nodes

(elements)

4s (10)

Utip (hybrid)

Utip(ana.l.)

1.0298

tttip(disp.)

Utip(anal.)

1.0164

c%hybrid

az an_.

1.0180

0"2: &ngtI.

1.0323
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Figure 3.7: Anistropic taperedcantileversubjectedto a uniform load.

25



(b) Anisotropic case- 8 nodes, 15 fl elements

E1 = 3 x 10rpsi ; E2/EI = 1/100

No. of Nodes

(elements)

0 = 45 °

45 (10)

0 = 30 °

45 (10)

0 = 0 °

45 (10)

Uti p (hybrid)

0.1060"

Uti p (displ.)

0.2012"

o'_ hybrid

2068.0 psi

0.0315"

0.00423"

0.03876"

0.00419"

1968.5 psi

2027.3 psi

or, displ.

2636.8 psi

2076.0 psi

1999.0 psi

Discussion of Numerical Experiments

For isotropic materials, when the analysis was conducted nsing four-node quadrilateral ele-

ments, neither the hybrid nor the displacement models captured the cubic variation of the

displacement until the mesh was sufficiently refined. However, the stresses from the hybrid

model were better, though only marginally, since only a linear variation in the stress was

used. When quadratic elements were used, the hybrid element model gave excellent results.

both for stresses and displacements, as the stress shape function was a complete cubic and

was thus able to approximate the bending moment and shear stress very accurately.

For anisotropic materials, although the results obtained using linear and quadratic hy-

brid models were close, the displacement models gave significantly different results, in both

displacements and stresses. This behavior is especially significant when the material axes

are inclined to the global axes. While the hybrid element model continues to give excellent

stresses, the displacement model gives very poor results.

For a tapered cantilever beam, again, the hybrid model gave better displacements than

the displacement model, especially for anisotropic materials with material axes that do not

coincide with the global axes.
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4 Vibrational Analysis

4.1 A Variational Principle for Dynamic Analysis

The equations for dynamic equilibrium are given by:

(r_j,j + Fi = r_ in V at all t
(4.1)

where ri = inertia impulse vector.

Equation (4.1) may be written as

_5[/ot(_rGj + Fi _ ri)dtl = 0 (4.2)

Hence, another way of writing this equation would be
(4.3)

tO, J ÷ fi = r_

where _-_5= crij and fi = F/. The tensor r_5 is referred to as the impulse tensor field.

The boundary conditions are prescribed velocities and surface impulses, specified oil

mutually exclusive regions, i.e., (4.4)
[Zi ___. tt i on su

and rijnj = b_ on s,

where nj is the component of the unit normal vector on s,.

The strain-displacement relation is

1

(4..5)

(4.6)

and the kinetic energy function is

_f = fv fq(ri)dV

(4.7)

while the complementary strain energy is

U'=/v u*l(ri j )dV
(4.s)

where
Oul/ O'rij = _ij

(4.9)

In linear elasticity, 1
U 1 : ijklTijTkl

(4.1o)
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Correspondingto Hamilton's principle, we candefinea functional as

_c = gJ(_'_)- u'(_j,j) - t_u_ds dt (4.11)
1 u

where the assumed stresses must satisfy the equations of motion and the traction (impulse)
boundary conditions of s,.

In the finite element formulation, equilibrium must be satisfied in each element and on
inter-element boundaries so that

where sup denotes the part of the surface of Vp on which velocities are prescribed and SNp

denotes the interelement boundary of Vp, the particular element

sp = s_p + s,p + sNp (4.13)

so that

(4.14)

The admissible surface velocities and the impulses must satisfy the following conditions:

1. Prescribed at arbitrary times tl and t2.

2. Continuous first derivatives for _rij, continuous m.

3. Equilibrium conditions (dynamic/boundary conditions).

4.2 Formulation of Element Matrices for Dynamic Analysis

For dynamic analysis using the hybrid/displacement models, a consistent mass matrix was

generated with a kinetic energy term that was introduced into the energy functional, so that

1

7Cdyn = _L°TSsigdV-LsigTDudV+_ss ttTTds-£fl_tT£tdV (4.15)

When discretized, this becomes

7;ayn=_[_°'rSadV-_arDudv+f_ uTTds-_puThdVJ (4.16)

If u = Nq, the kinetic energy term becomes

fvPglrNrNqdV = (4.17)_TM4
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where

M = £ N r pNIJ[d(d, (4.18)

is the mass matrix for each element.

After the element mass matrices are assembled to form the global mass matrix, the

generalized eigenvalue problem

Kz = £Mx (4.19)

is solved for the first few eigenpairs.

4.3 Numerical Experiments for Hybrid Stress Element Vibra-

tional Analysis

Problem Definition

A cantilever beam is analyzed for its first few natural frequencies (eigenvalues) and mode

shapes using both the assumed-displacement and the hybrid-s_ress method.

A consistent mass is generated and the generalized eigenvalue problem

M4 + I(q = 0 (4.20)

is solved for its eigenpairs, which are the natural frequencies and mode shapes of the physical

system. Since the size of the matrices is not very large, a solver from IMSL that determines

the eigenvalues and eigenvectors is used instead of the sub-space iteration scheme suggested
by Bathe [2].

For Bernoulli-Euler beams composed of isotropic materials (neglecting the effect of shear

deformation and rotatory inertia since only the first two modes will be considered where

the correction introduced as a result of these effects is small), the equation of motion of
transverse vibration is

d2 / d2u \ d2u

+ pA- (4.21)
where

u = u(x,t) is the transverse displacement

,4 = area of cross section of the beam

=0

x = axial distance from the point of support

p = mass density of the material

[ = centroidal moment of inertia of the cross section

The boundary conditions for the cantilever are:

At the fixed end:
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du

u=O and _x =0 (4.22)

At the free end:

d2u d3u

dx-----7 = 0 and dx-----5 = 0 (4.23)

Substituting the boundary conditions into the general solution, we get three homogeneous

linear algebraic equations which would give a non-trivial solution only if the determinant of

the coefficients vanishes, are derived

1+cos AL coshAL+l =0 (4.24)

which is the characteristic equation whose roots are the eigenvalues ,\r times length L. A

numerical solution alone exists for the above equations, determined by Craig and Bampton.

The first few values are

(4.25)

and the natural frequencies for the cantilever are given by

I

_'_ - L_- (4.26)

so that

and

1

_1- L2 (4.27)

1

22.O3_2- L2 (4.28)

Substituting the numerical values for the given problem results in the following:

aJ1 = 17.58Hz , _2 = ll0.15Hz (4.29)

The mode shapes are given by

V_ (x ) = cosh_ A4x ) - cos(Arx) - kr [sinh(Arx) - sin ( ArX)] (4.30)

where

k_ = cosh(A,. L) + cos(A,. L)
sinh(A L) + sin(,  L)

as in Craig.

The first two mode shapes for a cantilever in free vibration are shown in Fig. 4.1.

(4.31)
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Linear Element Results

The meshes that were used for the static problem are used here, with the number of elements

varying from 10 to 80.

The normalized natural frequencies (wl anal./wl f.e. and _z2 anal./_'2 fie.) are plotted

against the number of elements, and are shown in Figs. 4.2 and 4.3.

For the isotropic case, the hybrid model converges to the analytical solution faster than

the assumed displacement model. The mode shapes however do not seem to vary much, as

seen in Fig. 4.4 (for the mesh with 80 elements).

The material model chosen for the anisotropic case is that of cubic syngony with the same

properties as in the static case, and the 40 element mesh. The first two natural frequencies,

for various angles of rotation of the material axes, using both finite element approximations
are tabulated in Table 4.1
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Figure 4.2: Normalized natural frequencies (mode 1 analytical solution vs.

element solution) for various linear element mesh sizes.

mode 1 finite

Figure 4.3: Normalized natural frequencies (mode 2 analytical solution vs.

element solution) for various linear element mesh sizes.

mode 2 finite
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Figure 4.4: Linear quadrilateral finite element meshes used for the numerical experiments

with hybrid stress elements and vibration analysis.
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TABLE 4.1

Natural frequenciesfor an anisotropiccantileverbeam

using 40 linear elements for different material axes' orientations

Orientation of axes t.d I (hybrid) wl (displ.) co2(hybrid) a.'2(displ.)

0 ° 14.351 Hz 14.785 Hz 85.950 Hz 88.341 Hz

30 ° 13.307 Hz 14.726 Hz 80.673 Hz 88.0945 Hz

45 ° 12.873 Hz 14.058 Hz 78.379 Hz 85.011 Hz

60 ° 13.307 Hz 14.847 Hz 80.673 Hz 87.318 Hz

90 ° 14.351 Hz 14.247 Hz 8,5.950 Hz $5.934 Hz

From the above table it is observed that the hybrid model gives identical results for a

rotation of 90 ° and no rotation of the material axes, and for 30 ° and 60 ° rotations of the

axes. The displacement method however gives results that vary, even though the moduli El
and E2 are equal.

Quadratic Element Results

The natural frequencies and mode shapes of the isotropic and anisotropic cantilever beams

are now calculated using an eight noded finite element mesh with the number of elements

varying from 3 to 20. The meshes used are the same as those for the static case.

The normalized natural frequencies (a;1 anal./col f.e. and _2 anal./a,,2 f.e.) are plotted

against the number of elements, and are shown in Figs. 4.5 and 4.6. Again. it is observed that

the hybrid model converges to the analytical solution faster than the assumed-displacement

method. The mode shapes however are very similar in both models, except for the maximum

"amplitude" (when 20 quadratic elements are used) as shown in Fig. 4.7.

The first two natural frequencies for various angles of rotation of the material axes, in

an anisotropic cantilever beam, using both the displacement and hybrid approximations are

tabulated in Table 4.2. The material properties and the material model assumed are the

same as for the static anisotropic case, i.e., 3 independent constants in a crystal with cubic
syngony, where

E1 = E2 = 1.9716 x 10Zlb/in 2

u12 = 0.2875 (4.32)

G12 = 5.4758 x 1061b/in 2
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Figure 4.5: Normalized natural frequencies (mode 1 analytical solution vs.

element solution) for various quadratic finite element mesh sizes.

mode 1 finite

Figure 4.6: Normalized natural frequencies (mode 2 analytical solution vs.

element solution) for various quadratic finite element mesh sizes.

mode 2 finite
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Figure4.7: Quadratic quadralateral finite element meshes used to study the behavior of

hybrid stress elements in vibration analysis.
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TABLE 4.2
Natural frequenciesfor an anisotropiccantilever beam

using 10quadratic elementsfor different material axesorientations.

Orientation of the Axes col (hybrid) col (displ.) co2(hybrid) co2(displ.)

0° 14.130Hz 14.197Hz 83.675Hz 84.682Hz

30° 13.020Hz 14.061Hz 78.264Hz 83.995Hz

45° 12.679Hz 13.058Hz 76.499Hz 78.911Hz

60° 13.020Hz 13.707Hz 78.264Hz 82.211Hz

90° 14.130Hz 13.276Hz 83.675Hz 80.023Hz

The resultsof the hybrid model areasexpected,with frequenciesfalling as the angleof
rotation is increased,reachinga minimum at a rotation of 45°, and then increasingsymmet-
rically (sinceE1 = E2) up to a rotation of 90 °.

The results of the displacement model do not show symmetry about 0 = 45 °, and are

not as invariant under a rotation of the axes.

A Specific Numerical Example

A tapered cantilever beam consisting of three crystals of the same material but with differ-

ent orientations of the material axes is considered next and analyzed for its displacements,

stresses, natural frequencies, and mode shapes. The beam is shown in Fig. 4.8. Since the

nickel alloy for which experimental data was provided exhibits cubic syngony in its crystals,

the same material properties are considered as used in the previous. Also, since of all the

elements tested, the 8 noded hybrid-stress element gave the best results, this element is used

in the mesh shown in Fig. 4.9.

The following are specifications for the beam:

g = 5 in; depth at fixed end = -5 in; depth at free end = 1 in;

static load = 150 lb; crystal orientation = 0°, 30 ° and 45 ° (see Fig. 4.7).

The results are tabulated below:
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Figur_ ' ": \ tapered cantilever beam consisting of 3 crystals subjected t,o a stath load.

i

.=

' _ -2

i 4 f

Figure -1.9: Eight noded quadrilateral finite element mesh for the tapered cantilever beam

shown in Fig. 4.8.
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TABLE 4.3

Comparison of hybrid displacement mode resultsfor a

tapered, 3-crystalanisotropiccantileverbeam

Parameter
Hybrid Method Displacement Method

?-/tip 0.0539 in 0.0502 in

O'bending(max) 1.632 x IO s psi 1.519 x 104 psi

rm_x 1.643 × 10 s psi 1.511 x 104 psi

_1 30.198 Hz 30.869 Hz

_ 131.482 Hz 143.976 Hz

The displacements and stresses differ at most, by about 6.5_, and the natural fle-

quencies by even less. However, if the 30 ° rotation is changed to a 60 ° rotation, all errors
increase rapidly to a maximum of almost 12_.

The location of the points of maximum bending and shear stress are predicted accurately
by both models, although the predicted magnitudes differ. The maximum bending stress is

observed in elements 1,6 while the maximum shear stress is observed in elements 5,10 as the

material axes in these two elements are rotated by 4,5° relative to the global fl'ame.
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5 Three-Dimensional Element Definition

The formulation of the three--dimensional hybrid stress elements is identical to the formula-

tion of the two-dimensional elements. The static complementary energy functional, subject

to equilibrium conditions, is given by:

The stresses are interpolated using the stress parameters .d and the polynomial stress

shape function P, 5.2)
cr = Pfl

such that the homogeneous equilibrium conditions are satisfied:

DTc_ = 0 (5.3)

A primary difference between three-dimensional and two-dimensional hybrid stress element.
calculations is in the calculation of the P matrix in the above equation. As shown by Spilker,

et al, in order for an element to be invariant under rotation, the stress interpolation functions

must be formed from a complete set of basis functions and the number of independent stress

parameters must be equal to or greater than the number of rigid booty modes:
(.5.4)

17;3 _ RF -- I?,R

For a quadratic twenty node brick, nF = 60 and nR = 6 so that the minimum number of

stress parameters is 60 - 6 = 54. Not only must there be at least this minimum number of

stress parameters, but also the stress interpolation functions must be formed from a complete

set of basis functions, in this case, complete polynomials. Complete quadratics would yield

a total of 60 stress parameters, but if the stresses are to satisfy equilibrium: the number of

stress parameters is reduced to 48, six short of the number required for invariance. Thus, full

cubics must be used to calculate the stress interpolation functions. Initially, the P matrix

p

would be:

1 ...z a 0 0 0 0 0

0 1 ... z a 0 0 0 0

0 0 1... z 3 0 0 0

0 0 0 1 ... z a 0 0

0 0 0 0 1... z 3 0

0 0 0 0 0 1 ... z z

(5..5)

where 1 ... z a represents a complete cubic polynomial of :20 elements and each zero represents

20 zeros. The P matrix is then a 6 x 120 matrix and there would be 120 stress parameters.
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The number of stressparameterscanbe reducedby applying the homogeneousequilib-
rium equations:

oqa,: 8r,:_ Or._

0--7 + Oy + Oz
- 0

c)n:_ 8% Or_,z+ + - 0 (5.6/
8z Oy Oz

t)T_ Ory_ OqO'_
+ +

Ox 0!1 8z
= 0

Each of these equations yields a reduced order polynomial with 10 terms. For the equa-

tions to be satisfied for arbitrary values of x, y, and z, the coef_cients for each term must

equal zero. Thus, 30 equations are generated relating the stress parameters to each other
and the P matrix is reduced to a 6 x 90 matrix.

For an isotropic case, the number of stress parameters can be further reduced by applying

the Beltrami-Michel stress compatibility equations. These equations are essentially a refor-

mation of the compatibility conditions in terms of the stresses. For the anisotropic case, one

must again start with the strain compatibiiity conditions and reformulate the stress compat-

ibility equations using an anisotropic stress-strain taw. The strain compatibility equations

are:

The stress-strain law for a fully anisotropic material is given by:

s_ = S{jcTj (5.8)

where the compliance matrix S is

all a12 a13 a14 al5 a16

a12 a22 a23 a24 a25 a26

a13 a23 a33 a34 a35 a:_
S = since a,j = aji

a14 a24 .a34 a44 a45 a46

(5.9)

a15 a2s a35 a45 a55 a56

a16 a26 a36 a46 a56 ac_
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The stresscompatibility equationsbecome

02SP, k3k O2S&k k 02SP4k3k
Or2 + Ox OxOV

Since S is constant, the compliance matrix can be pulled out of the differential, giving

02 plkSk c)2P2k3_ 02 p4k,3k

Sil _y2 q- Si2 (_X2 -- Si4 9280y

This procedure yields six equations, each with four terrns. Again, since these equations

must be satisfied at'all points in the dement, each coemcient must be zero and 24 equations

are generated to eliminate stress parameters, leaving a total of 66 stress parameters.

The solution for the P matrix can be obtained in dosed form for both the constraints

due to equilibrium and due to stress compatibility, however, the algebra is quite tedious.

This procedure can be accomplished by a series of matrix manipulations on the original P
matrix and on the various derivatives of the P matrix. Both the first and second order

derivatives must be defined beforehand, and since the position of a particular term (i.e., the

z92 term) will vary with which derivative is being taken, a careful account of the variables
associated with each term in the derivatives is necessary so that the constraint equations

can be properly formulated. The P matrix is statically condensed using first the equilibrium

constraints and then the stress compatibility constraints resulting in a 6 x 66 matrix.

Because the number of stress parameters is above the mininmm number of 54, the soiution

may be overly stiff, but this can be determined by a comparison of this fomulation with the

,54 stress parameter element of Rubenstein, Arluri, and Punch [20] while using an isotropic

material model.

For an eight node brick, nF = 24 while nR = 6, so that the minimum number of stress
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parametersn_ is 18. If trilinear stress interpolation functions are used, cr is given by

a:_ = 31+32x+33Y+34z

o'_ = 35+36z+37y+3sz

_r_ = 39 + 3_oz + 3_ly + 3_2z

r::y = 313 -t- 314x + 3159 -'k 316z

rzz = ,317q-318x+319Y+,320 z

r_gz = 3_1 + 3_2z -'k 323Y -'k 3_4z

Introducing cr into the equilibrium equations gives

:.320

324

323

Substituting and renumbering yields

= -32 - 31s

= -,314 - 37

= -,312 - ,318

(5.1o_)

v_ = 31 + ,32x + ,33y + ,34z

ey = ,3s +,3sz +,3ry +,3sZ

0% = ,3o + 31oX + ,3uy ÷ 3i2z
.5.14)

r:cy = 313 q-,314X -}-,31sy + ,31sZ

T:cz = 317 -'_ 318 x -_- 319Y -- (32 + 315)Z

Tyz : _20 -_- '321Z -- (312 At- /_18)Y (97 -[-_14) z

Twenty-one stress parameters remain and thus the element should be free from spurious

zero-energy modes.

A minimum stress parameter element from an eight noded brick has been proposed by

Punch and Atluri [18]. Here certain symmetries of the elements are assumed and methods

of group theory are used to eliminate some of the stress parameters without affecting the

rotational invariance of the element. This method is clearly adequate for isotropic materials

and m@ be adequate for materials which, while not isotropic, have high degrees of symmetry,

but they are not applicable to fully anisotropic materials.
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The stressapproximation for this 18fl elementis given by:

¢_ = (91 + 93) + 2_7x + _18_z

O'y = (91 + }34 --,33) "J- 2_8_/ "-F 317XZ

O'z : (}31 -- }34) -_- 239Z + ,316xy

,_ - :31o+ (}3,4- 9_)x + (913- 9,)y + + 3_)_

,_ = 311+ (}3_-/3_)_ + (_ + .3_)y- (31_+ 3,)=

-- , , _ _'_ry z -- 312 -4- (,32 -- 35 --,36)x -- (fls + 39)_] --(,39 -_-151 ~

The stiffness matrix is calculated as before

K = GTH-1G

where

and

(.5._6)

folfolfo 1H = PTSPtJ [d_dr]d¢ (.5.17)

/ol/ol/o1G = pTB*d(d7?d¢ (5.18)

The calculation of the compliance matrix is made in the material axes and a rotated

compliance matrix 5' is calculated with respect to the global axes. The new terms are given

by:
(tij = Z Z a,_,_qimqj_ (5.19)

rr_ n

where a,_,_ are the components of the compliance matrix in the material axis and the qim

and qj_ are functions of the direction cosines relating to the material and global axes.
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6 Alternate Hybrid Stress Element Formulations

6.1 The Eight-Node Punch and Alturi Brick Element

An alternative approach to the assumed stress field was proposed by Punch and Alturi. The

basic hybrid stress model is developed in the same manner as previously outlined regardless

of the form of stress interpolation. The Punch and Alturi approach is based upon symmetry

group theory. The method defines a set of ¢natural' irreducible strain subspaces which are

invariant to element translation and to the 24 symmetric rotations of a cube. For each such

strain space, at least one stress space must be defined which is also invariant. For an eight

node brick, there are eighteen natural strain subspaces along with six rigid body modes. A

minimum of 1S independent stress subspaces are required. If complete quadratic functions

are used to generate the equilibrated stress subspaces, a total of 4$ stress subspaces are

created. Using all 48 subspaces would be equivalent to using complete polynomials and

eliminating 12 of the resulting 60 stress parameters by applying equilibrium constraints.

The difference with this formulation and those given earlier is that here each stress param-

eter is related to an invariant subspace rather than to an individual term in an equilibrated

complete polynomial. Thus, any stress parameter can be removed without affecting the in-

variance of the resulting element. After the parameter is deleted, the rank of the resulting

stress function matrix, G, must be at least IS. Certain linear terms must be included, but

most of the quadratic terms can be eliminated without affecting the rank of G. However,

once subspaces are removed, the resulting G matrix is composed of incomplete polynomials,

and may no longer contain all of the cardinal stress states of pure bending. Therefore. the

resulting element must be evaluated to be sure that the bending stiffness is adequate.
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For a least order formulation, these stress subspaces are presented below as second order

tensors in 3-space:

0-1
1 0 0]

= 0 1 0 #1
0 0 1

0 z Y]
y x 0

1 0 O]
o"(1) = 0 - 1 0 _3

0 0 0 0 0 0 ]
+ 0 1 0 34

0 0 -i

0 : 0 ]
0-_3"_) = z 0 -x d5

0 -m 0
+

0 0 g ]
0 0 -z 3s

y -z 0

0-4 = -y 0 0 37 + -z 2y -z .3s + 0 0 -9
-z 0 0 0 -: 0 -x -Y "2:

(6.1)

[olo] Eool] [ooo]0-_i) = 1 0 0 ,81o -[- 0 0 0 _11 H- 0 0 i ,312

0 0 0 i 0 0 0 1 0

o] [ooo] [=oo](3) q_ 0 0 0 ,313 + 0 x 0 ,314 + 0 --: 0 ,3150"5

0 0 -Y 0 0 -z 0 0 0

E000] [000]O'_4) = 0 0 0 _16 -t- 0 ,£Z 0 ,317 -}- 0 0 0 ,318

0 0 zy 0 0 0 0 0 1

The corresponding stress space function matrix is given below:

Gy

Gz

v;:v

T_z

• rvz

1 0 1 0

1 0 -1 1

1 0 0 -1

0 z 0 0

0 Y 0 0

0 z 0

0 0 2z 0

0 0 0 2y

0 0 0 0

z 0 -y -z

0 Y -z 0

0 -z -z 0

0 0 0 0 y 0 : 0 0 yz

0 0 0 0 0 z -z 0 zz 0

2z 0 0 0 -y -z 0 xy 0 0

0 1 0 0 0 0 0 0 0 0

-z 0 1 0 0 0 0 0 0 0

-: -g 0 0 1 0 0 0 0 0 0

• (6.2)

,_18

This element performs well in tension, pure shear, and pure bending with isotropic ma-

terial properties. It also performs well in both tension and pure shear with fully anisotropic

material properties as long as the loads are applied separately and along the axis of a cubic
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element. When the loads are combined, the performance begins to degrade. However, exact

solutions of the stresses and strains in these combined loading situations must be completed

before the full extent of the degradation can be determined.

One additional problem exists with this element. The formulation of the stress and strain

subspaces was based upon the symmetric transformations of a cube. As the geometry of the

element is distorted, the performance of the element is degraded. A similar degradation may

occur if the anisotropy of the material is increased, especially when non-symmetric loads are

applied. It should be noted, though, that in most cases these elements give better results

than eight noded displacement elements, although the computational effort is significantly

greater.

6.2 The Twenty Node Punch and Alturi Brick Element

A twenty node hybrid element has been developed based upon the work of Punch and Atluri.

This element uses the same lines and quadratic terms that are used for the eight node element

described above, but adds six linear terms, eighteen quadratic terms, and twelve cubic terms

for a total of ,54 stress parameters. The following stress subspaces make up the twenty node

elements:
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Cubic Terms

-4xyz z(x2+v 2) _(z2+z 2) ]r2:_43 = _(_+y2) -4zyz x(y2 +_2) z43Jy(x2 + z2) =(y2 + _2) -4xy_

[ o 1F3 : o'_8) -- -z(2x 2 4" y2) 6xyz z(Y 2 - z2) _44 4" z(y 2 - x 2) 6xyz -z(y 2 4" 2z 2) J345

y(2z 2 4" z2) x(y 2 - z2) -6xyz y(z 2 4" 2z2 ) -z(y 2 + 2z 2) 0

[ z2oo] [ooo1F4 : o"4 = 0 0 0 ,5'46 + 0 xz 2 0 ,347

0 0 x2y 0 0 x:y 2

zy2 0 0 1
+ 0 zz2 0

0 0 0

_48

_ = -3x2y 6xyz ,:349 4" -3xy 2 2Y 3 -392z /35o

-3x2z 6J:yz 0 6xyz -3y2z 0

(6.s)

+
0 6xyz --3xz2 1

6xyz 0 -3Y z2 _351

-3xz 2 -3yz 2 2z 3

E z2001 E00ojo = 0 0 0 /352 + 0 -zz 2 0 /353

0 0 yx 2 0 0 :cy 2

-zy 2 0 0 t
0 zx 2 0 i354

0 0 0

The twenty node hybrid element has an H matrix of rank 54 which must be invertible.

The H matrix is given by
L

H = _ pTsp
i=1

where L is the number of integration points. The matrix S is of rank six so that a minimum

of nine integration points is required for H to be of full rank and thus invertible. Without

a priori knowledge of the mesh, the integration scheme must be symmetric. Using a Gaus-

sian quadrature, this requires 27 integration points (i.e., 3 x 3 x 3), and consequently the

computational effort is 3 times what is actually required. Irons has implemented on a 14

point integration scheme, which is basically a 2 x 2 x 2 scheme with an additional integration

point at the center of each face of the hexahedral element. This integration scheme gave

identical results to five decimal places to the Gaussian quadrature scheme with essentially
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60% of the computational effort. A 2 x 2 x 2 integration schemewasalso formulated with
an additional integration point at the center of the hexahedral element for a total of nine

integration points, the minimum number required. The stress space function matrix for the

54 term model is shown below.
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6.3 The 42 Parameter Hybrid Stress Brick Element

An alternative element which does not suffer from these symmetry-related problems was

also developed. Complete polynomial stress functions are used and equilibrium constraints

are applied, yielding a 48-parameter element. The strain compatibility equations are then

satisfied using a fully anisotropic material model. This constraint reduces the number of

stress parameters to 42. This is an inordinately large number of stress parameters and may

yield an overly stiff element, but it may also yield an element that is far less sensitive to

distortion and anisotropy.

While the calculations for the polynomials can be derived in closed form, the algebra

is extremely tedious. However, the constraint equations can be formed as a set of matrices

showing the initial relationship between the stress parameters as derived from the equilibrium

equations and the stress compatibility.

The equilibrium constraint matrix contains only constants while the compatibility con-

straint matrix contains ratios of the compliance matrix constants. The constraint matrices

are first internally reduced eliminating the constrained parameters from the constraint ma-

trices. The P matrix initially contains only the complete basis functions as:

P 0 0

0 P 0

0 0 0
(6.6)

0 0 ... 0

0 0 0

0 0 P

where P represents the following 10 terms for the eight node element:

1 2x 2y 2z x 2 2xy 2xz y2 2yz z 2 (6.7)

and each 0 represents 10 zeros. For the eight node element, P is initially a 6 x 60 matrix,

while for the twenty node element, full cubic basis functions are required so that the P

matrix is 6 x 120. For the eight node element, there are 12 equilibrium constraint equations

and six compatability constraint equations, while for the twenty node element there are 30

equilibrium constraints and 24 compatibility constraints.

The elements of the P matrix are functions of position, therefore, the P matrix must be

calculated for each integration point and then the constraint equations are used to eliminate

the constrained stress parameters. The P matrix is then statically condensed to yield a

6 x 42 matrix for the eight node" element and a 6 x 66 matrix for the twenty node element.
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6.4 Numerical Experiments

The eight node and twenty nodehybrid elementswere comparedto the standard displace-
ment elementsfor both singleelementsand for a six elementbeam. The singleelementswere
tested in pure tension, pure shear,bending, and torsion usingboth isotropic and anisotropic
properties. As is shown in Table 6.1, all elementsgaveexact solutions for pure tension and
pure shearwith isotropic material properties. For pure bending,the eight nodedisplacement
element is overly stiff but all of the hybrid elementsagaingave exact results. None of the
elementsis able to give exact results for torsion, but the hybrid elementsperform as well or
better than the correspondingdisplacementelement.

Table 6.1. Displacements Produced by Cardinal Stress States for Isotropic
Material Properties

Pure Pure Pure Pure
Element Tension Shear Bending Tortion

DM S 100 100 67 84
H8-42 100 100 100 84
H8-1S 100 100 100 $4
DM20 100 100 100 95
H20-54 100 100 100 102

As the degreeof anisotropy is increased,the performanceof the displacementelements
decreases. Table 6.2 shows information equivalent to Table 6.1 for anisotropic material
properties. Here the ratio of En/E_ is :3 and the material axis is rotated with respect to

the element axis by the direction cosines given below:

Direction Cosines:

.5774 .574 .5774

.7071 -.7071 .0000

-.4082 -.4082 .8165

Both of the displacement elements show deterioration in bending and torsion as the

degree of anisotropy increases although the degradation is less for the twenty node element.
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Table 6.2. Displacements Produced by Cardinal Stress States for Anisotropic

Material Properties

Pure Pure Pure Pure

Element Tension Shear Bending Torsion

DM8 100 100 46 76

H8-42 100 100 100 84

H8-18 100 100 100 84

DM 20 100 100 97 92

H20-54 100 100 100 95

These calculations were performed using double precision for all real variable calculations.

The result for the twenty node elements were compared for three integration rules: a 4 x 4 x 4,

a 3 x 3 x 3, and the 14 point rule proposed by Irons [7]. The differences in results were less

than one percent. Spilker [22] stated that the 14 point rule produced some ill conditioning

of H but no such ill conditioning was detected in these runs. Consequently the 14 point

rule was used for all subsequent calculations except for occasional checks to assure that the

results were indeed the same for the 14 point and 3 x :3 x :3 rules.

A six element cantilever beam was analyzed using both eight node and twenty node

bricks. These beams are shown in Fig. 6.1. The beams were analyzed both with a pure

moment loading and a uniform end shear and for isotropic material properties as well as a

series of anisotropic material properties. Figure 6.2 shows the normalized tip displacement

for a pure moment load with eight node bricks as a function of the degree of anisotropy

where the degree of anisotropy is given by the ratio of the Young's moduli in the primary

material axes. Figure 6.3 shows the normalized tip displacement of the cantilever beam for

uniform end shear as a function of the degree of anisotropy. The hybrid stress elements are

clearly less sensitive to the degree of anisotropy than the displacement. This is true even

for the least-order formulations of Punch and Atluri which depend upon element symmetry

for their formulation. Figure 6.4 shows a comparison of crz in the cantilever beam for a pure

moment load on the end of the beam as a function of the degree of anisotropy. The stresses

in the beam should not change as the material properties change and all stresses except or.

should be zero. This is clearly not the case for the displacement elements, even for the twenty

node brick. The eight node element actually gives better results than the twenty node brick

because the stresses were interpolated at the 2 x 2 x 2 Gauss points which are the optimum

points.

The hybrid stress elements clearly give better displacements and stresses for highly

anisotropic material properties than their corresponding displacement elements but at some

calculational expense. The calculation times are shown in Table 6.3 for calculation of the

six element cantilever beam. The hybrid stress elements require up to three times as long

for the calculations but the displacement elements require at least twice as many elements

to obtain the same degree of accuracy in crz. The accuracy in the shear stresses and in cry,

and cry, though, are still better in the hybrid stress elements.
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Figure 6.1' Three-dimensionalfinite c!,,mentmeshesof a cantilever beam.

A. Eight node brick elements

B. Twenty node brick elements

Figure .6.2: Normalized tip displacementfor a cantilever beam with pure moment loading
for various three-dimensionalhybrid stresselementsvs. the analytical solution asa function

of the degreeof anisotropy.
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Fi_'_lre6.3: Normalized tip displacenmntfor a cantilever beam with uniform end shear for
variousthree-dimensionalhybrid stresselementsvs. the analytical solution asa function of
the degreeof anisotropy.
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Figure 6.4: Normalized Bending stress for a cantilever beam with pure moment loading for

various three-dimensional hybrid stress elements vs. the analytical solution as a function of

the degree of anisotropy.
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Calculation Time for a Six Element Cantilever Beam

DM 8 DM 20 H8-18 H8-42

Time(sec) 67 552 108 562

H20-54

1422

6.5 Conclusions

The hybrid stress elements presented here can provide significantly improved accuracy in the

calculation of both displacements and stresses for highly anisotropic materials in areas of high

stress gradients. The twenty node hybrid stress brick element provides increased a.ccuracy

over the twenty node displacement element at a cost of approximately a three to one increase

in computational time. The eight node hybrid element H8-18 provides much improved results

over the standard eight node displacement element with less than twice the computational

time. The most surprising result, however, is that the eight node hybrid element provides

almost the same degree of accuracy as the twenty node displacement element at one-fifth of

the calculational effort. For high degrees of anisotropy, this element gives results superior to

the twenty node displacement element.
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7 Numerical Examples

The final objective of this study was to incorporate the finite element methodologies, algo-

rithms, and solution schemes developed for the stress and vibrational analysis of anisotropic

elastic bodies into the SPAR finite element code. The COMCO three-dimensionM anisotropic

hybrid stress elements were incorporated into SPAR on the NASA/MSFC EADS computer
system as SPAR solid element types $42 and $82.

A routine for calculating element material (compliance) matrices for non-isotropic mate-

rials was implemented as a TAB sub-processor (SMAT). The stress calculation and display
functions were incorporated into the SPAR GSF and PSF processors. Documentation of'

these features is provided in the form of updates to the SPAR Reference Manual (AppendixA).

A number of example cases were executed to test the new code and to study the effects of

various crystal configurations on SSME turbine blades. The first example consists of a one

inch square by ten inch long cantilever beam modeled with 10 $82 eight-node solid elements

as shown in Fig. 7.1. This example is a three-dimensional version of one of the example

two-dimensional problems reported in Reference 19. As in the two-dimensional problenl.
the material chosen was that of cubic svngonv to simulate the single

nickel alloy. The cantilever beam problem was solved statically for an crystal turbine blade
end shear load of 2.50

lb. fbr material axis rotations of 0, 30, 4.5, 60, and 90 degrees. The results are presented

in Table 7.1, and compared with the two-dimensional results from Reference 13. As in the

two-dimensional example, it is seen that material axis rotation by pairs of angles that are

complementary produce nearly identical results. This problem was also solved dynamically

for natural frequencies. The results are presented in Table 7.2. As in the static case, the

frequencies calculated for 0 and 90 degree rotations and 30 and 60 degree rotations arealmost identical.

The second example consists of the same cantilever beam modeled with 40 $82 eight-node

solid elements, as shown in Fig. 7.2. This problem is also a three-dimensional extension of a

two-dimensional example problem from Reference 13. This 40-element model was executed

with the same loads and material axis rotations as before. The results, compared with the

two-dimensional results, are presented in Table 7.3. The results from the 40-element model
are also compared with the ten-element model results and presented in Table 7.4.

The third example consists of a three-dimensional model of an SSME turbine blade

constructed for use in studying the modal characteristics of various crystal configurations in

a typical turbine blade application. This model was developed from a two-dimensional plate

model of a blade currently in use al: MSFC. A plot of this model is shown in Fig. 7.3. A

series of runs was made with this model for a blade material of cubic syngony to simulate

the single crystal nickel alloy. The material axes were rotated about each of the principal

axes in turn, and frequencies were calculated for each orientation. The results are presented

in Table 7.5. The material properties used are also given in the table. Rotations of the

material axes about the global 5' axis produced the greatest effect, with an S.8% increase in

the second mode frequency for a material axis rotation of 45 degrees. The frequencies tbr the
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Figure T.l: Three-dimensional finite element model o[ a cantilever beam, 10 $82 eight node

soiid elements.

,z/

Figure 7.2: Three-dimensional finite element model oI_ a. cantilever beam, 40 $82 eight node

solid elements.

Material properties for Cubic Syngony

EI=E2=E3= 1.9716E+07 psi
5.4658E + 06 psi

U=
0 2875

l) --
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TABLE 7.1

Anisotropic beam modeled-with 10 $82 three-dimensional elements compared with

two-dimensional solution for ten element model.

3-D 2-D

Material Axis Rot. u-tip max S u-tip max S

(deg) (in) (psi) (in) (psi)

0 .0509 14201 .0512 11532

30 .0606 14242 .0605 12272

45 .0639 14256 .0638 12566

60 .0606 14230 .0605 12273

90 .0509 14201 .0512 11532

TABLE 7.2

Anisol;ropic beam modeled with 40 $82 three-dimensional elements compared with

two-dimensional solution for 40 element model.

3-D 2-D

Material Axis Rot. u-tip max S u-tip max S

(deg) (in) (psi) (in) (psi)

0 .0508 14618 .0496 11117

30 .0612 14172 .0579 10579

45 .0660 15341 .0619 11023

60 .0613 15546 .0579 10579

90 .0508 14618 .0496 11117
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TABLE 7.3

Anisotropic beam modeled with 40 $82 three--dimensional elements compared with

three-dimensional solution for ten element model.

3-D (40 elem) 3-D (10 elem)

Material Axis Rot. u-tip max S u-tip max S

(deg) (in) (psi) (in) (psi)

0 .0508 14618 .0509 14201

30 .0612 14172 .0606 14242

45 .0660 15341 .0639 14256

60 .0613 15546 .0606 14230

90 .0508 14618 .0509 14201

TABLE 7.4

Anisotropic beam modeled with 40 $82 three-dimensional elements compared with

three-dimensional solution for ten element model.

3-D (40 elem) 3-D (10 elem)

Material Axis Rot. Frequency Frequency

(deg) (Hz) (Hz)

0 260.53 260.69

30 238.24 239.19

45 230.42 233.27

60 238.48 239.36

90 260.53 260.69
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TABLE 7.5

Effect of orientation of material axeson frequenciesfor SSME turbine blade with material
of cubic syngonyto simulate the singlecrystal nickel alloy.

Rotation about X-axis fl (Hz) _ (Hz) f3 (Hz)
(deg)

0 4379 9388 IIS18
30 4348 9375 i171$
45 4334 9318 11676
60 4337 9298 11707
90 4376 9388 11816

Rotation about Y-axis fl (Hz) f2 (Hz) f3 (Hz)
(deg)

0 4379 9388 11818
30 4378 9918 11820
45 4361 10216 11826
60 4362 10101 11834
90 4378 9388 11816

Rotation about Z-axis fl (Hz) _ (Hz) f3 (Hz)
(deg)

0 4379 9388 11818
30 4379 9337 11814
45 4380 9306 11515
60 4382 9347 11813
90 4380 9393 11816

Material properties for Cubic Syngony

EI=E2=E3= 1.9716E4-07 psi

G = 5.4658E-t- 06 psi

v = 0.2875
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first and third modeschangedvery little with material orientation. The largest changein the
first modefrequencyoccurredwith a material rotation of 45degreesabout the global z axis.

This orientation resulted in a first mode frequency reduction of 1.0%. Material axis rotations

about the global z axis produced very little change in frequency, the largest change being a

0.9% reduction in the second mode frequency for a material axis rotation of 45 degrees.

The fourth example consists of the previous blade example modified to incorporate the

$82 solid elements in the base region of the blade, including the "fir tree" portion. A plot

of the modified blade model is shown in Fig. 7.4. The same series of runs made for the

previous configuration was made for this model. The material axes were again rotated about

each of the principal axes and frequencies calculated for each orientation. Since the SS2

elements were used throughout the blade, the material orientations were effective from the

tip to the base of tile blade. The frequency results are summarized in Table 7.6. Once again,

rotations of the material axes about the global !/ axis produced the greatest effect, with

an 8.4% increase in the second mode frequency for a material axis rotation of 45 degrees.

However, unlike the previous configuration, rotations about the global a: axis also produced

a significant effect. A reduction to the first mode frequency of -7.6% occurred for a material

axis rotation of 45 degrees about z. Material axis rotations about the global z axis again

produced very little change in frequency. The largest change was a 0.8% reduction in the

second mode frequency." for a material axis rotation of 45 degrees. The largest change in the

third mode frequency was a 2.8% reduction which occurred for a 30 degree rotation about

the 3: axis.

o

D
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Figure ;1.4: Three-dimensional model of a SSME turbine blade modified to incorporate the

$82 solid elements in the base region of the blade.
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TABLE 7.6

Effect of orientation of material axes on frequencies for SSME turbine blade with material

of cubic syngony to simulate the single crystal nickel alloy.

Rotation about X-axis fl (Hz) f2 (Hz) f3 (Hz)

(deg)

0 4969 8764 11849

30 4679 8755 11516

45 4593 8677 11561

60 4678 8644 11754

90 4967 8764 11847

Rotation about Y-axis fl (Hz) f2 (Hz) f3 (Hz)

(deg)

0 4969 8764 11849

30 4828 9218 11980

45 4737 9499 12059

60 4769 9426 12045

90 4969 8764 11847

Rotation about Z-axis ft (Hz) f2 (Hz) f3 (Hz)

(deg)

0 4969 8764 11849

30 4957 8722 11837

45 4957 8694 11837

60 4963 8728 11836

90 4971 8768 11847

Material properties for Cubic Syngony

El=E2=E3= 1.9716E+07 psi

G= 5.4758E+ 06 psi

v = 0.2875
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8 Calculation of Material Constants and Stress Mea-

surements for Anisotropic Materials

8.1 Introduction

Anisotropic materials, in particular single crystal alloys, are widely recognized for their su-

perior mechanical properties as compared with multi-grain materials. In many applications,

in particular high-performance turbine blades, anisotropic properties allow for fine _'tuning"

of the dynamic characteristics by means of a proper orientation of the material axes. As a

result, single crystal alloys are finding more and more applications in the aerospace industry.

The anisotropic properties of these alloys introduce additional complications into com-

putational and experimental procedures. Many experimental and computational methods
which are very effective for isotropic materials may be inapplicable or perform very poorly

in the case of strong anisotropy. It was shown in previous sections that displacement-based

finite elements do not perform well in the static and dynamic analysis of anisotropic ma-

terials and that a hybrid finite element formulation is better suited for these applications.

Similarly, strong anisotropy inherent in single crystal alloys requires special attention in the

design and interpretation of experimental results. For example, it can be observed that tile
calculation of material constants for anisotropic materials depends on the fourth powers of

the direction cosines of the the crystallographic axes. It is obvious that the calculated values

of the material constants will be strongly dependent on all misalignments of the crystallo-

graphic axes or strain gauges (or other measurement devices). Thus, the design of robust

methods ['or the evaluation of anisotropic materials requires special attention.

In the spirit of these remarks, we will take a closer look at some experimental procedures

for anisotropic materials and at the sensitivity of their results to errors, misalignments, etc.

Moreover, we will try to optimize certain experimental parameters in order to minimize this

sensitivity and thus develop robust procedures for the parametric evaluation of anisotropic

materials.

The particular experiments considered here include:

• the calculation of elastic material constants from tensile test experiments at an arbi-

trarv orientation of the material axes and of the strain gauges

• the calculation of stresses from strain measurements at an arbitrary orientation of the

material axes and of the strain gauges

For both types of experiments, a general procedure is formulated, taking into account

arbitrary types of crystals and arbitrary orientation of the material axes and strain gauges.

Furthermore, a study of the sensitivity of the experimental results to various parameters

is presented. The conclusions of this sensitivity study are the basis for optimization of the

configuration of the material axes and strain gauges.

Several numerical examples illustrate the basic ideas and effectiveness of the procedures

developed.
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8.2 Stress, Strain and Compliance for Anisotropic Materials

8.2.1 Definitions

In the general theory of elasticity the stress and strain measures are defined as second order

tensors: cr and e, respectively. The general representation of these tensors in any Cartesian

coordinate system {z,}, i = 1,2,3 with base vectors e, is of the form (see reference [6]):

= _ij e_ ® ej (S.1)

= cij e_ ®ej (8.2)

The fourth order compliance tensor S is defined by:

o_ (s.3)S-

and has a representation
S=Sijkt(ei®ej) @ (ek,gel)

(s.4)

8.2.2 Transformation Under Rotation of a Coordinate System

Consider two different coordinate systems: {2_} with base _ and {xi} with base e{. Then
related bv the

the stress tensor o" has two different representations in each of these systems,

5ransformation law:
crij -:- VikVjl_kl

where the elements of the rotation matrix rij are defined by

rlj = el • ej

Using matrix notation, the above can be expressed as

[_]= [R][e][R]r

where the rotation matrix [/{]has the property

[R]-'= jR]_

(s.,_)

(s.6)

(s.7)

(s.s)

The components of the strain tensor are transformed according to a similar formula

[4 : [R][i][R_] (s.9)

Note that matrix notation is used here to emphasize the fact that tensors o" and _ (defined

as linear operators) remain unchanged and that only their representations change.
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8.2.3 Stress, Strain and Compliance - Technical Notation

In practical applications a slightly different notation is usually introduced to representstress,
strain and compliance. Instead of the two-dimensional matrices, stressand strain vectors
are introduced:

_ O" To" {ai} {_r11, 0"22, a33, 0"12, a13, 23} (8.I0)

e = {_,} = {elt,c22,c33,e12,c13, e23} r (8.11)

The compliance matrix is defined by
c)e

S----- --
O_r

and has, in the most general case, 21 independent components. For cubic systems, which

are of primary interest here, the number of independent constants is equal to :3.

It should be noted that, with the technical notation introduced in the previous section, the

stress vector, strain vector and compliance matrix are not elements of tensor spaces defined

on the three dimensional Euclidean space anymore. Therefore, they do not necessarily

obey the rules relating to objects of these spaces (tensor laws), in particular, the rules

of transformation under rotation equations (8.7) and (8.9). Thus, in technical notation,

boldface symbols represent vectors and matrices, not tensors.

It can be shown, however, that the transformation of the components of the stress and

strain vectors under the rotation of a coordinate system are represented by

and

= Q_ (8.13)

where the matrix Q consists of the appropriate combinations of products of elements of the
rotation matrix R. Note that, since tensor laws are not valid for the technical notation, the

inverse matrix Q-1 is not equal to QT and has to be reconstructed from elements of the

matrix R r.

For the compliance matrix, it can be shown that it transforms according to the formula:

S = QSQ-_ (8.14)

Note that the compliance matrices S and S are non-symetric. The symmetric compliance

matrices are obtained if new measures of strains "[ij ----- 2_ij are introduced into vector e.

However, since this new strain vector requires a different transformation matrix than Q in

(8.13), it will not be used in the computations. If needed, the symmetric compliance matrix

can be easily reconstructed from the matrix S by the use of the formula

ss_j = S_j i= 1,2,3, j =1,...,6 (8.15)

ssij = 2Sij i=4,5,6 j = 1,...,6
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8.2.4 Compliance Matrix in the Local Coordinate System

The compliancematrices have the simplest forms in the local coordinate systems {5i} as-
sociatedwith the crystallographicaxesof the particular crystal type. In thesesystems,the
compliancematrices may have asmany as 21 independentconstants (for triclinic systems)
or as low as two independent constants(for isotropic materials). For cubic systems,which
areof primary interest here, there are three independentconstantsal, a2, and a3, located in

in the following locations:

al a2 a2 0 0 0

a2 al a2 0 0 0

a2 a2 al 0 0 0
la 0 00 0 0 _3

la 00 0 0 0 :/3

0 0 0 0 0 1_a3

In order to clearly represent the number of independent constants and the structure of

the compliance matrix for arbitrary crystal systems, one can introduce a locator matrix L,

so that S = La (8.17

In the above, a is the vector of unknown constants, a = {al,a2,...a,_} r and the locator

matrix is a three-dimensional (6 × 6 × n) matrix consisting of the appropriate coefficients,

with non-zero entries corresponding to actual locations of consecutive elements a_. It's form

can easily be reconstructed from the structure of the matrix S. Typical forms of this matrix

for various crystal classes are shown (in the symmetric version _S) in reference [8]. The>;

are also briefly presented in Appendix C of this report.

8.3 Evaluation of Material Constants for Anisotropic Materials

8.3.1 Basic Formulation

In this section, we will derive a general formula for the calculation of the elastic constants

for anisotropic materials from tensile tests (or other tests with a prescribed stress state).

A typical test is presented in Fig. 8.1' a sample of anisotropic material, with material

axes defined by the coordinate system {_:_}, is subject to a certain stress state o" (usually pure

tension) defined in the coordinate system {x,}. The strains are measured by strain gauges

(or other techniques) aligned with the coordinate systems {zl _)} where a is the number of a

gauge (singlemeasurement). In general, systems and } need not be aligned.
Introducing the transformation matrices:

Q- representing transformation from {_,} to {x,} (8.18)

and Q(a)- representing transformation from {xi} to {x{ _)} (8.19)
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crystal

strain

gauge

Figure 8.1: A typical test for anisotropic materials.

the formula for measured stress eG can be written as:

Q(_)
(1) " QSQ -'°'(_) = e_ (8.20)

where "_(1)°(_)represents the first row of the matrix Q(_). Note that the index (a) in parentheses

indicates quantities associated with measurement number c_, but not necessarily measured

in the direction of x _. In particular, o"(_) is represented in the coordinate system {x,}.

Introducing the locator matrix L to represent the specific crystal class, this equation
becomes

(1) " QLaQ -1°'(_') = G

or in the index notation
Q (_) ,"_ f_-I (c_)r

lm_C,_i_C),_er _ijza 9 = e_ (8.22)

It can be noted that the unknowns in this equation are material constants a_. For a tensile

test, the stress vector is defined as o" = {o', 0, 0, 0, 0, 0} and the above equation can be recast
in a "normalized" version

--1 _c_

Q_Q,,.Qj_ Lozaz = _ (8.23)

Assuming that a total of m independent measurements are made, the system of equations
used to determine the material constants is of the form

Ka = e (8.24)

or, using index notation:

i(a_afl __ ga (8.25)

where /3 = 1...n (number of material constants), a = I...m (number of measurements)
and

I(_ ")(_) 'q 'q= _l_,._i,ejlLi.iZ (8.26)
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Note that a is a counter for single measurements (strain readings). If several strain

gauges are used on the same sample, then each gauge reading is counted as one measure-
ment providing one piece of information (one equation in (8.24)). If several different samples

are used to determine the material constants for the same crystal, then measurements on

consecutive samples are added as new equations to the system (8.24), with a being an accu-

mulative counter of single measurements (strain readings). Note that in this case, elements

of the matrices Q may change from sample to sample, due to different orientations of the

crystal axes.

8.3.2 Calculation of Material Constants From "Too Many" Experiments

The necessary condition for the system (8.24) to have a unique solution is that the number

of single measurements is at least equal to the number of unknown coefficients m >_ 7_. In

practice, the number of single measurements will usually be larger, so that m > n, and the

system (8.24) will be overdetermined (provided that the equations are linearly independent).

For such systems, the exact solution usually does not exist and can be only found in tile

approximate sense.

One of the popular methods for the solution of such systems is the least squares method,

based on the minimization of the norm of the residual of the system (8.24):

r = HKa - ell 2 ($.27)

A detailed derivation of this method can be found in reference [5]. Here, we will present only

a final form of the square system of equations to be solved:

(KTK)a = KTe (8.28)

or, in index notation:

(K_K_)a_ = K_ _
(8.29)

8.4 Evaluation of Stress Components for Anisotropic Materials

8.4.1 Basic Formulation

Calculation of stresses in machine elements from strain gauge measurements is a very typical

operation in structural mechanics. However, for anisotropic materials, this procedure may

be very sensitive to various experimental errors, particularly to misalignments of the strain

gauges.

A typical setup for obtaining measurements is presented in Figure (8.2). The figure

present_s a section of an anisotropic body (say, a turbine blade) with the directions of the

crystallographic axes defined by the coordinate system {_,}. At a given point on the surface

of the body, a local Cartesian coordinate system {xi} is defined, with axes xl and x2 tangent

to the surface and axis Xa normal to this surface. In order to measure strains, a number
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of strain gauges is located on the surface of the body (usually strain gauges are assembled

into strain rosettes). In Figure (8.2), only one gauge, with the associated coordinate system

{x! _) } is indicated.

The stress-strain relationship in the material coordinate system {xi} is of the standard

form:

sa-= (8.30)

After transformation to the surface coordinate system {x,} the above equation becomes:

Q/ Q-I = (s.3t)

where Q represents transformation from {_i} to {xi}. Note that, in the absence of surface

tractions, the stress components on the surface satisfy oi3 = 0, i = 1,2, 3 so that the essential

non-zero components of stress can be organized into a vector

_-- {O'11 , O'22, O'12 ) (s.32)

related to the three-dimensional version by a simple permutation

,:"i = P_ (8.33)

As mentioned before, in order to calculate stress, one performs strain rneasurements in

various directions on the surface. Each measurement provides one piece of information (one

equation) in the form

Q(_). QSQ-1p-_ = ¢_ (8.34)(1)

where c_ is a strain measurement in the gauge a. If the total of m strain gauges is used,

then the stresses can be calculated from the system of equations

KN = e (8.35)

or

K_zc_Z = e_ (8.36)

where

I(_ 0 !_) ^ -_= -.,m QmiSijOj, P,_Z (8.37)

and a = 1,..., m, /3 = 1,2, 3. From the structure of a matrix K it can be concluded that the

calculated values of the stresses are sensitive to the precise specification of the orientation

of material axes and the strain gauges. Thus, there may exist certain configuration of the

strain gauges that will minimize this sensitivity and produce the most robust setups. This

question will be addressed in the next section.
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8.5 Optimization of The Strain Gauge Orientation in Tests for

Anisotropic Materials

8.5.1 Problem Statement

Considerthe problem of the calculation of the material constants (8.24) or of the calculation

of stresses from strain measurements (8.64). It can be noted, that the actual form of the

coefficient matrix K depends on the orientation of material axes (matrix Q) and strain

gauges for consecutive measurements (matrices Q(_)). Thus, it makes sense to pose the

following problem:

Find a combination of coefficients (in particular, Qij and _(_/,_lm) such that:

1. 'The system is non-singular:

r(K) =n (8.38)

where r(K) is the rank of the coefficient matrix, and rz is the number of unknown

material constants.

2. The solution of the system is the least sensitive to the variation of the orientation of

material axes or strain gauges (in case of the calculation of stresses, only the latter is

of interest).

The solution to this problem is suggested by the theory sensitivity of linear systems of

equations, presented, for example, in reference [5]. This theory is summarized in the next

section.

8.5.2 Background--Sensitivity Analysis

Consider the system of linear equations:

Ka=b (8.39)

and suppose that the coefficient matrix K is perturbed by eF where F is an arbitrary matrix

such that IIFII= 1 (in the appropriate norm). Then, it can be shown [5] that the sensitivity

of the solution a to the perturbation e satisfies the inequality:

[la(¢)-atl < _(K)p(K)+o(¢ '2) (8.40)
Ilalt -

where a(c) denotes the solution of a perturbed system of equations and:

_(K) = [IKll [IK-'II = spectral radius of K

/)K llgll
- norm of the variation of K
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If we decide to use the natural squarenorm I1" 112,then we have IIKII2 = °'max(K) and

_(K) = Crm_(K)/_min(K) and the sensitivity inequality becomes

Ila(¢)-all2 < 1 + o(¢23 (8.4l)
IlaH2 - amln(K)

In the above, Crmin(K) is the minimum singular value of the matrix K.

The calculation of singular values is not a very typical operation and there is no software

readily available for this procedure. Then, it is useful to observe that singular values of K

are defined as square roots of the eigenvalues of KTK, namely

8.5.3 Optimization of Strain Gauge Orientation and Material Axes

With the background presented in the previous section, it is easy to observe that in order to

satisfy criterion (2) presented in Section 8.S1, we need to:

Find a combination of the orientations of the strain gauges and the material azes,

which 'mazimizes the minimum eigenvaIue of the rnatriz KT N.

Note, that the results of this analysis are useful for the satisfaction of criterion ( 1) - existence
of the solution. This is because the rank of matrix K is equal to the number of nonzero

singular values of K, which, in turn, is equal to the number of nonzero eigenvalues of KrK.
\(A'rA )

Therefore, the solution to the system exists if the minimum eigenvalue "-,m_ is greater

than zero.

To present the above optimization criterion in a more formal way, we denote all the

free optin5zation parameters by pi, i - 1,... K (these may be angles of strain gauges, Miller

indices, etc.). Then, to satisfy criteria (1) and (2), one needs to:

T(KTA )
Find {_i} and corresponding /'rain S_tCh that:

_(KTA) ((A'rK)) ($.43)rain = IIlaX /_min _> 0

{p,}

Itshould be noted that thisgeneral approach can be used both for the optimization of the

calculationof material constants and the calculationof stressesfrom strains.

8.5.4 Numerical Procedure

In order to solve the optimization problem (S.43), a variety of procedures may be applied.

In this work, it was assumed that the number of free parameters is small enough and the

I(KTK)evaluation of eigenvalue -ram is cheap enough that a simple searching procedure can be

effectively applied. This procedure is based on two steps:

T8



1. Scanall the possiblevaluesof {Pl} with sufficiently small resolution and evaluate, for

(KrK) (using, for example, the Jacobieach combination, the minimum eigenvalue Amin

method [1]).

2. Select the combination {Pi}, corresponding to the maximum:

_Krl, ") ((K'K))/_min : max Ami n
{w}

This procedure is general enough to be applied to the optimization of the orientation of

material axes and of location and orientation of strain gauges.

8.6 Numerical Examples

The formulation and procedures, presented above, were the basis for the development of a

computer software package designed to optimize the orientation of strain gauges in tensile
tests and in stress measurements on real samples. In this section, a few selected introductory

examples of this optimization will be presented. It should be noted that the formulation

presented in this section and implemented in the program is very general and can be applied

to any type of crystal as well as to isotropic materials (the differences between various
material classes are restricted to the locator matrix L). For the sake of simplicity and

easy intuitive verification, the examples presented here deal with rather simple classes of

materials, namely isotropic materials and cubic systems.

8.6.1 Optimization of the Calculation of Material Constants

The first example illustrating the correctness of the procedure is the calculation of material

constants for an isotropic material from tensile tests (Fig. S.3). In this case. there are

two independent material constants, so it suffices to consider one sample with two strain

gauges. In order to test the optimization procedure, we assume that the orientations of both

gauges are unknown, so there are two independent optimization parameters, namely the

angles czl and a2. After application of the optimization procedure, the calculated optimal

configuration of the strain gauges is: ch = 0, c_2 = 90 (or any equivalent configuration). At

this configuration, the calculation of material constants is the least sensitive to alignment

errors, a result that intuitively seems to be correct. This optimal configuration is presented

in Fig. 8.3b. The same configuration is obtained if the three gauge rosette presented in

Fig. 8.3c is considered. In this case, there is one optimization parameter (angle a) and the

optimal orientation is c_ = 0 (or, equivalently, a = 90,180, etc.). In another analysis for this

material, a triangular strain rosette presented in Fig. 8.3d was considered. This rosette has

one optimization parameter, namely the rotation angle a. The results of the optimization

analysis indicate that if the triangle is equilateral, then all the configurations are equivalent,

i.e., sensitivity of results to misalignments of o_ is the same (and rather low) at any position

of the rosette.
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Figure 8.3: Optimization of strain gauges for isotropic material. (a) general configuration,

(b) optimal configuration of two gauges, (c) optimal configuration of a rosette, and (d)

configuration of a triangular rosette.
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Figure 8.4: optimization of strain gauges for cubic syngony. (a) configuration of a triangular

rosette and (b) three independent strain gauges.

The single crystal alloys used in the manufacturing of turbine blades are usually of cubic

syngony. For this crystal system, there are three independent material constants, so that a

minimum of three measurements (strain gauges) are necessary. Thus, as the first example,

we considered one sample with the material axes aligned with the edges of a sample and

with the direction of tension (Fig. 8.4) (Miller indices for consecutive sample axes were:

< 100 >, < 010 >, < 001 >). The first optimization case considered was a triangular

rosette with one optimization parameter, the angle a (Fig. 8.4a). The answer obtained

in this case is that there exists no configuration of the rosette that can provide sufficient

information (the system of equations is always singular). The same result was obtained even

if three or more independent strain gauges were considered (Fig. 8.4b). The explanation

of this result is simple: one of the independent material constants for the cubic system

is the shear modulus and, for the perfectly aligned crystal configuration presented in Fig.

8.4, a tensile test does not produce any shear mode of deformation. Thus, there exists no
information available to calculate the shear modulus.

As the next case we considered two samples of cubic structure: the one analyzed before

and a second sample, with Miller indices corresponding to the primary, secondary and tertiary

axes < 1, 1, 1 >, < 1,2,-3 >, and < -8,4, 1 >, respectively. In each sample, a two-gauge

rosette was used, with both the location (face 1 or 2) and the orientation (angle a) considered

as optimization parameters. The solution obtained in this case is presented in Fig. 8.5a (both

angles are equal to zero). If three-gauge rosettes are considered, the optimal configuration is

slightly different (see Fig. S.Sb). In this case, the optimum angles are Oel = 20 °, c_2 = 0 with
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Figure S.5: Optimization of strain gauges for cubic syngony. (a) optimal configuration of

two-gauge rosettes and (b) optimal configuration of three-gauge rosettes.

the location of gauges as presented in Fig. 8.5b. Note that in order to calculate the optimal

configuration, alt the samples have to be considered simultaneously, because the results are

"coupled." For example, if the Miller indices of sample 2 of Fig. 5b were changed, then the

optimum orientation of the rosette in sample 1 would be different from the above example.

These simple examples illustrate the basics of the optimization procedure and the type of

results obtainable. As previously mentioned, it is possible with this formulation to consicter

more complex crystal classes than cubic, since the procedure developed here is completely

general.

8.6.2 Optimization of Calculation of Stresses from Strain Measurements

As an example of calculation of stresses from strain measurements, let us consider a sample

of the material of cubic syngony, presented in Fig. 8.6.

The axes of the material coordinate system {5:i } are defined by three vectors represented

in the reference coordinate system E 3 as:

d_ = {0., 0.3162, -0.9487}

d2 = {0., 0.9487, 0.3162}

= {1, 0, 0}

The three independent constants for the cubic material are a_ = 1.0 x 10 -6, a2 = -0.3 x
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10 -6, aa = 4.0 x 10 -6, so that the symmetric compliance matrix defined in the material

coordinate system is of the form

Ss = 10-6 x

1.0 -0.3 -0.3 0 0 0

-0.3 1.0 -0.3 0 0 0

-0.3 -0.3 1.0 0 0 0

0 0 0 4.0 0 0

0 0 0 0 4.O 0

0 0 0 0 0 4.O

The coordinate system {xi}, in which stresses will be calculated, is defined by three

vectors ei, i = l, 2, 3, specified as:

el = {0.5774,-0.2573, 0.7715}

e2 = {0.5774,-0.5345,-0.6172}

e3 = {0.5744, 0.8018,-0.1543}

The strains are measured by a three gauge strain rosette, presented in Fig. 8.6. The

orientation of this rosette is an optimization parameter in this case.

After the execution of the optimization version of the OPTAM-S code, the optimal value

of the angle c_ was calculated to be 95 ° , which corresponds to the orientation presented in

Fig. 8.6.

For the configuration obtained from the optimization run, a stress calculation version of

the code was executed, with strain readings corresponding to consecutive gauges of the rosette

being: g(a) = 0.01, _.(2) = 0.0035, c (a) = -0.003. The calculated non-zero components of

the stress tensor are: or11 = 296. ", _rl; = -524.8, cr22 = 6986.3.
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A Appendix- Description of Spar Reference Manual

Updates

A.1 Tab Processor Updates

A new TAB sub-processor, SMAT, was created to provide an alternative to using AUS/TABLE

to generate material flexibility coefficients (compliance matrices) for use with solid elements.

Based on inputs provided by the user, SMAT generates entries in PROP BTAB 2 21 as

required by ELD when using solid elements. SMAT may be used with the previously existing

solid element types $41, $61, and $81 as well as with the new element types $42 and $82.

The input required by SMAT is listed below. The detailed description of this input is

given in Appendix B.

n, w, nref

El, E2, Ea

Gr2, G13, G23

'UI2, U13, b'23

(DIRCOS) (1, J), J : 1,3) ]

(DIRCOS) (2, J),Y = 1,a)

(DIaCOS) (3, J), J :

0Cz, ' 0Ly_ _z

input only if nref = 0, or blank

A.2 ELD Processor Updates

ELD was modified to accept for the new solid element types $42 and $82. These element

types represent the COMCO three-dimensional anisotropic hybrid stress elements.

The $42 and $82 element material properties are obtained from the SPAR data set PROP

BTAB 2 21 as with the other solid element types. This data set may be constructed with

the AUS processor as before or with the new TAB subprocessor, SMAT.

The system diagonal mass matrix, DEM, produced by the processor E includes terms

for S42 and $82 element types. No consistent mass matrix is available for any of the solid

element types at this time.

The same mesh generation capabilities exist for the $82 element as for the SS1 element,

i.e., the hexahedral element network generator.
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A.3 EKS Processor Updates

Modifications weremadeto EKS, the elementintrinsic stiffnessand stressmatrix generator,
to incorporate the $42 and $82 element types.

Although the changes to EKS are transparent to the user, the bulk of the SPAR updates

were associated with EKS. The COMCO code was modified, adapted to the SPAR format,

and incorporated into EKS such that the intrinsic stiffness matrices inserted into the element

information packets were compatible with K, the system stiffness matrix generator. No

modifications to K were required.

The E processor now generates the data sets "$42 EFIL" and "$82 EFIL," which contain

the element information packets for the $4'2 and $82 elements, respectively. E also generates

the system diagonal mass matrix, DEM, which contains terms for $42 and $82 elements.

However, no modifications were required to E.

A.4 GSF/PSF Processor Updates

GSF was updated to generate stress data sets for the new $42 and $82 elements. Output

data sets are named "STRS $42 iset ncon" and "STRS $82 iset ncon," respectively, which

is consistent with data sets produced for other element types.

Control cards designating $42 and $82 elements may be included in GSF input as de-

scribed in the SPAR Reference Manual, Ref. 1. If control cards of this kind are not given.

stresses will be computed for all elements, including $42 and $82 elements.

No updates were made to PSF. A problem with the stress display at the corners of $82

which was present in the initial version of the code has now been corrected. Namely: the

stress values printed for the element corners are now evaluated at the element corners instead

of the integration points as was the case in the earlier code version.

A.5 Plot Processor Updates

GGS and PLTTEX were updated to recognize and plot the new $42 and $82 elements. These

elements may be selected by element type, group, and index, or will be included if "ALL" is

specified.

A.6 EADS Data Sets

The SPAR modifications have been fully implemented on the NASA/MSFC EADS computer

system. The current source codes reside in the following data sets:
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TAB

EDS

EKS

GSF

GGS

PLTTEX

CMLP410.SPAR.FORT(PRGTAB)

CMLP410.SPAR.FORT(PRGELD)

CMLP410.SPAR.FORT(PRGEKS)

CMLP410.SPAR.FORT(PRGGSF)

CMLP410.SPAR.FPRT(PRGGGS)

CMLP410.SPAR.FORT(PLTTEX)
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APPENDIX B - SPARREFERENCEMANUAL - ( CONTENTS)

Section
1

2

3

Foreward
Introduction
1.1 New User Orientation

1.2 SPAR Overview

Basic Information

2.1 Reference Frame Terminology

2.2 The Data Complex

2.3 Card Input Rules

2.3.1 Equivalence of Word Terminators

2.3.2 Continuation Cards

2.3.3 Loop-Limit Format

Reset Controls, Core size control, and the Online command2.4

2.5 Data set structure

2.5.1 TABLE

2.5.2 SYSVEC

2.5.3 ELDATA

2.6 Error Messages

Structure Definition

3.1 TAB - Basic Table Inputs

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

3.1.11

3.1.12

3.1.13

3.1.14

3.1.15

3.1.16

3.1.17

Text

Material Constants

Distributed Weight

Alternate Reference Frames

Joint Loc ation s

Joint Reference Frames

Beam Orientation

Beam Rigid Links

E21 Section Properties

E22, E25 Section Properties

E23 Section Properties

E24 Section Properties

Shell Section Properties

Panel Section Properties

Constraint Definition

Joint Elimination Sequence

Rigid Masses

(MATC)

(NSW)

(ALTREF)

(JLOC)

(JREF)

(MREF)

(BRL)

(BA)

(BB)

(BC)

(BD)

(Si)

(SB)

(CON)

(JSEQ)

(RMASS)
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3.1.18 SolidElementMaterials

TABLE 1-1: SPARElementRepertoire.

NAME
E21

E22

E23

E24

E25

E31

E32

E33

E41

E42

E43

E44

$41

$42

$61

$81

$82

F41

F61

F81

DESCRIPTION

General straight beam elements such as channels,

wide-flanges, angles, tubes, zees, etc.

Beams for which the intrinsic stiffness matrix is

given.

Bar- Axial stiffness only.

Plane beam.

Zero-length element used to elastically connect

geometrically coincident joints.

Two--dimensional (area) elements:

Triangular membrane

Triangular plate.

Triangular combined membrane and bending element.

Quadrilateral membrane.

Quadrilateral plate.

Quadrilateral combined membrane and bending element.

Quadrilateral shear panel.

Three-dimensional solids:

Tetrahedron (pyramid).

4-node tetrahedral hybrid (COMCO)

Pentahedron (wedge).

Hexahedron (brick).

8-node anisotropic hybrid (COMCO)

Compressible fluid elements:

Tetrahedron (pyramid).

Pentahedron (wedge).

Hexahedron (brick).

(SMAT)

See Volume 1
Sections:

3.1.7-9

3.1.10

3.1.11

3.1.12

3.1.10

3.1.13

12.,3.2.2.3

Notes:

- See Section 7.2 for examples of stress output.

- See Volume 2 (Theory) for element formulation details.

- Aeolotropic constitutive relations permitted, all area elements.

- Laminated cross sections permitted for E33, E43.

- Membrane/bending coupling permitted for E33, E43.

- E41, E42, E43, E44 may be warped.
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- Aeolotropicconstitutiverelationspermittedfor 3-D solids.
- Non-structuralmasspermittedfor line andareaelements.

3.1.18 SolidElementMaterials(SMAT)

Basedon inputsprovidedby theuser,SMAT generatesentriesin PROPBTAB 2 21asrequiredby
ELD when usingsolid elements. A descriptionof the contentsof eachinput record to SMAT
follows.

12, W, 12ref

Ei, E2, E3

G12, G13, G23

VI2_ V13_ ]123

(DIRCOS (1,J), J = 1, 3)

(DIRCOS (2,I), J = 1, 3)

(DIRCOS (3j), J = 1, 3)

axayaz
Yxx, Yyy, Yzz, Yxy, Yyz, Y zx

input only if nref = 0, or blank

where
n = the material constant entry

w = weight density (weight/unit volume)

nref = Alternate Reference Frame (see ALTREF)

If nref > 0, frame nref specifies material orientation relative to the element axes.

If nref = 0, this orientation is given by DIRCOS values.

E 1 =

4=

4=

Modulus of elasticity in material direction - 1

Modulus of elasticity in material direction - 2

Modulus of elasticity in mateial direction - 3

612 =

G1t =

G23 =

Shear modulus in 1-2 plane

Shear modulus in 1-3 plane

Shear modulus in 2-3 plane

]212 _-

VI3 =

V23 =

DIRCOS (I,J) =

Poisson' s ratio of comp in dir-2 to tension in dir-1

Poisonn's ratio of comp in dir-3 to tension in dir-1

Poisson's ratio of comp in dir-3 to tension in dir-2

Direction cosine matrix relating the material axis-i to the element axis-j.

95



czx, o:y, c_z = Linear thermal expansion coefficients

Yxx Yyy Yzz Yxy Yyz Yzx = reference or yield stress for use in stress displays.
See PSF.

EXAMPLE:

Z

3

-y

(-2)

.-- X

E. = E_ = 30 X I0_

= 30 X _0 s

G..2 -- 15 X 106

@s = G_.s = 15 X 10 s

V:2 = V_3 = V2, a ---- .3

SMAT: 1 .283

30.+6,30.+6,30.+5

15.+6,15.+5,15.+5

0.3,0.3,0.3

0.866,0.000,0.500

0.000,1.000,0.000

-.500,0.000,0.866

0.,0.,0.

1.,1.,1.,1.,1.,1.
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ALTREF: 2 2,-30.

SMAT: 1 .283 2

30.+6,30.+6,30.+5

15.+6,15.+5,15.+5

0.3,0.3,0.3

0.,0.,0.

1.,1.,1.,1.,1.,1.



3.2.2.3 Three-Dimensional Elements

Only one table pointer, NSECT (or the synonym NPROP), applies. The default value of

NSECT is 1. For fluid elements, NSECT points to a line in a table named PROP BTAB 2 20.

For solids, NSECT points to a line in PROP BTAB 2 21. Before executing ELD, the user

must construct these tables via AUS/TABLE, as indicated below. Mesh generation facilities

are described at the end of this section.

Fluid dements F41, F61, F81:

For additional information see Section 12. It should be noted that FSM is the only processor

which produces system matrices containing fluid element terms. Fluid element terms are not

included in the system diagonal mass matrix, DEM, produced by processor E, nor in the

system matrices produced by K, M, or KG. No form of static temperature, dislocational, or

pressure loading is defined for fluid elements. GSF produces no stress data for fluid elements.

Section properties are defined as follows:

@XQT AUS

TABLE(NI = 2, NJ = the number of different fluids): PROP BTAB 2 20

J = 1 : /9, fl $ Mass density, bulk modulus for fluid 1.

J = 2 .'/9, fl $ Mass density, bulk modulus for fluid 2.

Solid elements $41, $42, $6l, $81, $82 "

Solid element terms are included in the system diagonal mass matrix, DEM, produced by E,

and in the system matrices produced by K and M, but not those produced by KG. Properties

are defined as follows:

@XQT AUS

TABLE (NI = 31, NJ = number of different solids): PROP BTAB 2 21

J=l$

w>

all>

a2¢ oa2>

a3j a32

a41 -0_2

a51 o.52

a6_ a_2

Properties of material 1 follow.

_3 _4>

_3 o_ _s a_6>
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Ctx O_y

Yxx Yyy

J =25

O_z>

Yzz Yxy Yyz Yzx$

Properties of material 2 follow. (Same sequence as above).
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C Appendix--Compliance Matrices for Various Crys-

tal Classes

In this appendix, the specific forms of compliance matrices and independent material con-

stants are presented. The compliance matrices presented here are of the symmetric form

ss is obtained when the engineering strain measures ,_j = 2gij, i _ j are used in the strain

vector. Note that the nonsymmetric compliance matrices S, corresponding to the use of

strain measures eij, can be easily calculated according to the formula:

,bij &j i=1,9,3 j =1, 6

5'ij = 71 ss_ j i=4,5,6, j=l, .... 6

The independent material constants and compliance matrices for various types of crystal

classes are listed below:

TRICLINIC - classes 1,2

For the material of triclinic structure in classes 1,,o there exists o_1 independent compliance

constants al,...,a,2t. The location of these constants in the symmetric compliance matrix

sS=

is defined by:

(/1 (t 2 cL3

(/7' a8

a12

Ct4 a5 (t6

a9 ato all

a13 al,; a15

a16 G17 a18

a19 a2o

a21

MONOCLINIC - classes 3-5

For the material of monoclinic structure in classes 3-5, there exists 13 independent com-

pliance constants at,...,a13. The location of these constants in the symmetric compliance
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matrix is defined by:

ss=

al a7 a8

a2 alo

a3

0 0 a9

0 0 an

0 0 a12

a4 a13 0

a5 0

a6

ORTHORHOMBIC - classes 6-8

For the material of orthorhombic structure in classes 6-S, there exists eight independent

compliance constants al,..., as. The location of these constants in the symmetric compliance

SS=

matrix is defined by:

(t7

as 0

a 3 0

a4

0 0 0

0 0

0 0

0 0

a5 0

a6

TETRAGONAL - classes 9-11

For the material of tetragonal structure in classes 9-i1, there exists seven independent

compliance constants al, •.., at. The location of these constants in the symmetric compliance

(t I (t5 (t6

G1 a6

a2
SS=

matrix is defined by:

0 0 a7

0 0 --a7

0 0 0

a3 0 0

a3 0

a4

TETRAGONAL - classes 12-15

For the material of tetragonal structure in classes 12-15, there exists six independent com-

pliance constants al,...,a6. The location of these constants in the symmetric compliance
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matrix is defined by:

ss=

al as a6

al a6

a2

0 0 0

0 0 0

0 0 0

a3 0 0

a3 0

a4

TRIGONAL-HEXAGONAL - classes 16-17

For the material of trigonal-hexagonal structure in classes 16-17, there exists eight inde-

pendent compliance constants al,...,as. The location of these constants in thesvmmetric

compliance matrix is defined by:

ct 1

sS=

a 4 a 5 56 --aT 0

al a5 --56 a8 0

a2 0 0 0

a3 0 2as

5 3 2_6

2(al - a4)

TRIGONAL-HEXAGONAL - classes 18-20

For the material of trigonal-hexagonal structure in classes iS-20, there exist six independent

compliance constants at,..., as. The location of these constants in the symmetric compliance

matrix is defined by:

sS=

51 54

al

a5 a6

as --a6

a2 0

a3

0 0

0 0

0 0

0 0

a a 2a6

2(al - 54)

TRIGONAL-HEXAGONAL- classes 21-27

For the material of trigonal-hexagonal structure in classes 21-27, there exist five independent

compliance constants al,. •., ls. The location of these constants in the symmetric compliance
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matrix is defined by:

ss=

al t24 a5

(Zl a5

_22

0 0 0

0 0 0

0 0 0

a 3 0 0

a3 0

2(al -- a4)

CUBIC - classes 28-32

For the material of cubic structure there exist three independent compliance constants at, a.2

and a3. Their inderpretation in terms of Young modulus E, Poisson's ratio _ and shear

modulus G is given by:

1
al --

E

1

6Z2 = /)/_

1
a 3 = --

G

The location of material constants in the symmetric compliance matrix is defined by:

SS=

eL1 a2

al

a2 0

tI 2 0

al 0

a3

0 0

0 0

0 0

0 0

a3 0

a3

ISOTROPIC

For the isotropic material there exist two independent compliance constants al and a_. Their

interpretation in terms of Young modulus E and Poisson's ratio _, is:

1
a 1 =

E

1
a 2 --
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The location of material constants in the symmetric compliancematrix is definedby:

al a2 a2

al a2

al

0 0 0

0 0 0

0 0 0

2(al -- a2) 0 0

2(al -- a2) 0

2(al - a2)

SS=

A more detailed discussion of crystal structure and compliance matrices for various crystal

classes can be found in reference [8].

LOCATOR MATRICES

The non-zero elements of the locator matrices L for each of the compliance matrices can

be easily reconstructed by considering consecurive independent material constants ak and

observing that SLij k is the coefficient in matrix _j corresponding to the constant ak. For

example, for isotropic material, the "layer" of the compliance matrix corresponding to a, is

[ SLijl] =

and the ;qayer" corresponding to a2 is

0

1

1
[ s/lij2] =

0

0

0

100000

010000

001000

000200

000020

000002

11 0 0 0

0 0 0 0 0

10 0 0 0

0 0 -2 0 0

00 0 -2 0

0 0 0 0 -2
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